
The Importance of Safety Invariants in Robustness
Testing Autonomy Systems

Milda Zizyte1 Casidhe Hutchison1 Raewyn Duvall2 Claire Le Goues3 Philip Koopman4

Abstract—Common testing approaches can involve unit tests
that test for functionality, or robustness tests that check for
software crashes. In the case of autonomy systems, we posit
that robustness testing must involve invariant checking of safety
properties to be effective, because passing unit tests and the
absence of software crashes do not make a sufficient safety case.
In this work, we present empirical data that shows a large
proportion of bugs found in mature systems would not have
been discovered without invariant checking; and, in most cases,
represent physical safety violations of the systems. We also discuss
common invariant violations we have seen while testing systems,
to serve as a starting point for future testing efforts. We conclude
that invariant checking is indeed important for autonomy systems
and recommend that autonomy system test teams write safety
specifications and invariant checkers in order to help assure that
their projects are tested for safety.

Index Terms—robustness, autonomous systems, software qual-
ity, software testing, safety invariants

I. INTRODUCTION

Robotics and autonomy software makes up a core compo-
nent of cyber-physical systems. Due to the harm that these
systems may potentially cause to persons and their environ-
ments, these software components must be considered safety-
critical. To help ensure that such systems will not exhibit
unsafe behavior, projects typically include validation, in the
form of testing. Functional testing (e.g. unit and integration
testing) verifies that the system is behaving according to
behavioral requirements, while robustness testing is used to
check that the system does not violate safety requirements,
even in the presence of unexpected inputs. Our testing team
at Carnegie Mellon University’s National Robotics Engineer-
ing Center developed novel testing techniques for robustness
testing autonomy systems and tested more than 25 autonomy
systems over the last 10 years [1].

Typical software robustness testing checks whether or not
certain inputs can cause software crashes [2]. However, merely
checking for crashes is an insufficient safety case for autonomy

NAVAIR Public Release 2021-153. Distribution Statement A Approved for
public release; distribution is unlimited

This work was done under the RIOT program, which was funded by
the Test Resource Management Center (TRMC) and Test Evaluation/Science
& Technology (T&E/S&T) Program and/or the U.S. Army Contracting
Command Orlando (ACC-ORL-OPB) under contract W900KK-16-C-0006.

We would like to acknowledge the rest of the RIOT and ASTAA project
teams, whose work testing autonomy systems made this possible

1National Robotics Engineering Center, Carnegie Mellon University
mzizyte and fhutchin@nrec.ri.cmu.edu

2Carnegie Mellon University, ECE rduvall@andrew.cmu.edu
3Carnegie Mellon University, SCS clegoues@cs.cmu.edu
4Edge Case Research pkoopman@ecr.ai

systems. Because robotics systems are cyber-physical, any
robustness testing effort of systems must check for violations
of safety properties, such as speed limits. Such requirements
are typically defined in terms of invariants, or computable
properties of a system that must always hold true in order
for a system to be considered safe.

Invariants are used in model checking [3], [4] and runtime
verification [5] to verify and validate system safety. Runtime
verification techniques exist to check invariants when perform-
ing software robustness testing [1], [6], but are only useful
if system developers actually provide meaningful invariant
descriptions that correspond to the safety requirements of a
system. In the majority of systems we tested, a testable safety
specification was not part of the system design documents.

Safety standards for autonomy systems, such as UL
4600 [7], require fault injection testing, which software ro-
bustness represents a portion of; specifically representing some
sensors faults, network faults, or behavioral faults from un-
trusted software components. UL 4600 also requires the use of
run-time monitoring for checking the correctness of responses
to faults and the validity of the safety case assumptions. We
argue that the two should be used in conjunction to provide
safety assurances about system behavior.

In this paper, we advocate that writing and checking for
invariants must be a part of the testing effort in developing
autonomy system software. We first introduce the testing
framework and the mature systems from commercial and
defense industries that we tested (Section II). We then present
a brief statistical analysis of the faults found during the testing
of these systems (Section III), and follow this with a discussion
of common types of invariants, paired with several illustrative
examples of violations found in open source systems (Sec-
tion IV). With these quantitative and qualitative examples, we
argue that checking of safety invariants is both necessary and
achievable for ensuring the safety of autonomy software.

II. TESTING FRAMEWORK

To demonstrate the importance of invariants in the robust-
ness testing of autonomy software, we summarize our testing
framework and highlight several systems from our work testing
autonomy systems [1], specifically those systems that were
tested using invariant checking.

A. Testing tool

We have previously discussed the challenges inherent to
testing autonomy systems [1], and how we designed a tool to

41

2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S)

978-1-6654-3566-6/21/$31.00 ©2021 IEEE
DOI 10.1109/DSN-S52858.2021.00028

20
21

 5
1s

t A
nn

ua
l I

EE
E/

IF
IP

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 D

ep
en

da
bl

e
Sy

st
em

s a
nd

 N
et

w
or

ks
 -

Su
pp

le
m

en
ta

l V
ol

um
e

(D
SN

-S
) |

 9
78

-1
-6

65
4-

35
66

-6
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

SN
-S

52
85

8.
20

21
.0

00
28

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 13,2021 at 17:06:14 UTC from IEEE Xplore. Restrictions apply.

effectively robustness test autonomy software. Our approach
mutates field values in messages passed along the system’s
internal network, in order to test how the software responds
to unexpected inputs. We perform this mutation during log
replay, which ensures that the message sequence is valid for
normal operation of the system. These base logs, which we
refer to as scenarios, are recorded from system demos or
unit/integration tests provided with the System Under Test
(SUT). Logs recorded during a test can be used to calculate
whether an invariant holds during the run of a system.

B. Systems tested

While we discussed the many proprietary systems tested
in the prior work, in this paper we focus specifically on
those that were tested using invariant checking. Because of
confidentiality, we cannot disclose many details on these
systems, but they serve as important examples of how testing
with invariant checking is important in the industry. System A
is an unmanned ground vehicle autonomy platform, System B
is a search and rescue robot, Systems C and D are middleware
layers for robotics systems, and System E is an human
assistance robot. All these systems are Technology Readiness
Level (TRL) 6 or higher, meaning that they all have been
validated in a simulated or real-world operation environment.

We also discuss several more recently tested open source
systems, built on the Robot Operating System (ROS)1. The
open source systems we discuss in this paper are Niryo
One2, which is a manipulation robot; Turtlebot3, a rover-type
development platform; Fetch4, a warehouse assistant robot;
and ArduPilot5, an autonomous drone platform.

For all of these systems, robustness tests were generated by
mutating system runs captured by running unit/integration tests
and/or provided examples, such as the Disco demonstration
from the Fetch documentation, which moves the arm through
a trajectory of points.

C. Invariants used

Depending on the system, we check for various simple
(such as limit checks and liveness) and complex (those having
a stateful or temporal component) invariants. Several examples
are given in Section IV. While a software crash may also
be described as an invariant violation (the invariant being
“software shall not crash”), for the purposes of clarity in this
paper, we refer to invariants as safety properties beyond the
absence of software crashes.

III. EMPIRICAL ANALYSIS

We examine the number of unique bugs found in several
systems tested that would not have been found without an in-
variant checker. For the mature systems we tested, we classify
a “unique bug” to correspond to a single complete, diagnosed

1http://ros.org
2http://niryo.com/niryo-one
3http://turtlebot.com
4http://fetchrobotics.com
5http://ardupilot.org

bug report submitted to the developers of the system. For the
rest of the bugs, we estimated that a failure found in a unique
testing scenario (e.g. a unique example of behavior), triggered
using a mutated value on a unique input field (e.g. “velocity”
being a unique input from “position”), was a unique bug.

A. Proprietary Systems

In our historical testing of mature systems, we only tested
one system with a provided concrete safety specification:
System A. As shown in Table I, 22 out of 27 unique bugs were
only found with a simple or complex invariant checker. Eleven
of these invariant violations were from complex invariants.

For the other systems tested, no explicit system safety
specification was provided. This partly motivates our paper,
because testing may have missed safety properties that the
developers intended but did not communicate. By putting
in our own effort, however, we were able to glean some
simple safety invariants from the functional specification or
from nominal system behavior, such as message publication
frequency. All of the unique bugs found in systems B and
D were invariant violations, and one out of the three bugs
in system C was an invariant violation. Of the bugs that
were reported to developers, all were fixed. This shows that
common patterns can apply to various autonomy systems, and
should serve as encouragement that testers can build useful, if
incomplete, safety specifications with less effort than may be
feared.

B. Open-Source Systems

In all of the open source systems tested, there existed
unique bugs that were found using invariant checks, as show
in Table I. In Turtlebot and ArduPilot, bugs were found that
violated the speed limits defined in the documentation. In
Fetch, the discovered invariant violations were for violations
of the expected message broadcast frequency. All of these
violations present safety risks, because they cause the systems
to behave outside of the specified physical behavior. Speed
limit violations impact stopping distance and magnitude of
momentum in the case of a collision, and broadcast frequency
violations impact the ability of a system to stop or correct
itself in time.

C. Discussion

Our investigation shows that a large number of bugs found
when robustness testing autonomy systems can only be dis-
covered when checking safety invariants. Every system tested
exhibited at least one safety failure that would have been
missed by standard software crash checking. We showed that,
even when an explicit safety specification is not available, it
is still possible to write invariant checkers that find non-trivial
safety bugs in a system. While a system can be designed
to fail safe in the event of a software crash, violations of
safety invariants such as speed limits pose an explicit and
unmitigatable risk to safety. Even in the case of a broadcast
frequency violation, where the link to safety is not direct, the
presence of such a failure invalidates the timing analysis of

42

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 13,2021 at 17:06:14 UTC from IEEE Xplore. Restrictions apply.

System A B C D E ArduPilot Fetch TurtleBot Niryo
Total Bugs 27 2 8 1 3 16 12 5 1
Total Invariant 22 1 4 1 1 2 4 2 1
Complex Invariant 11 1 1 0 0 0 0 0 1

TABLE I
INVARIANT CLASSIFICATION FOR BUGS IN PROPRIETARY AND OPEN SOURCE SYSTEMS

a system that a safety case is built on. Limiting testing of
autonomy software to crash detection leaves an unacceptable
hole in the safety arguments of autonomy systems.

IV. COMMON INVARIANT VIOLATION EXAMPLES

We suspect that lack of domain knowledge is one of the ma-
jor barriers to entry to invariant-based testing. In this section,
we show compelling examples of invariant violations we have
found while testing autonomy systems. We discuss how these
invariants are defined, what the consequences of violating
these invariants are, and how to implement checkers for them.
While invariants generated from templates such as this are not
a substitute for an explicit set of safety requirements, they do
help find potential safety risks beyond software crashes.

A. System Timeliness

Timing analysis represents an important part of the safety
analysis of a system. Therefore, validating the robustness of
system timing is an important check when robustness testing.
In the case of periodic system components, checking the
timeliness of the output involves verifying that time between
messages does not violate a specified minimum broadcast
frequency. For service-oriented (aperiodic) components, time-
liness is about not exceeding the maximum response time. If
a component is not meeting its timing requirements, system
responsiveness as a whole is impacted, and system safety can
no longer be guaranteed. For example if a planning node fails
to respond in time to a new obstacle, it may not be possible to
avoid collision, even when the system would have been able
to respond appropriately if timing requirements were met.

Both broadcast frequency and response time are easy to
check by examining message timestamps. Even in cases where
the frequency is not explicitly listed in the specification,
estimating timing bound by checking for large deviations
from nominal behavior (e.g. triple the maximum nominal time
between messages) can help find violations of system timing
assumptions. In our testing we found violations of both explicit
(in System B) and estimated (in System A and Fetch) timing
requirements. In System A, further diagnosis of violations
of estimated timing requirements lead to the discovery of
potential infinite loops.

B. Limit Checks

Autonomy systems generally have safety limits on their
physical components, such as an actuation angle limit or a
speed limit. Violation of these limits can result in damage to
the machine or potential risk to system operators. We encoun-
tered speed limit violations in the open source ArduPilot and
Turtlebot systems.

We found a violation of angle limits in the Fetch system.
When malformed values were sent on the MoveGroup/Goal
message, the arm was sent a position that over-articulated
several joint angles, exceeding the specification for these joints
in the system documentation.

Notably for speed limits, negative or NaN inputs to the
command speed caused an invariant violation in multiple
systems. This leads us to believe that, even in commercially
released systems, speed checks on the system may have been
naively implemented as ! (speed < limit) .

Another common pitfall of checking a speed limit is that it
is not sufficient to merely verify that the x− and y− direction
linear speeds obey the limit, but that the length of the velocity
vector itself does so as well. In fact, we found violations in
the nominal case in the ArduPilot system, where the individual
components of the velocity did not exceed the speed limit, but
the actual speed did.

Actuation and speed limits must be specified for most
cyber-physical systems that are capable of self-displacement.
Furthermore, most robotics systems usually output odometry
and joint state messages that already report system actuation
for use in control loops. Because limit violations pose serious
danger if uncaught, checking these properties is critically
important for checking the safety of autonomy systems. Fur-
thermore, the relative ease of writing a speed and angle limit
invariants means that there is no excuse for failing to check
these properties.

C. Self-collision

A self-collision invariant violation occurs when some artic-
ulated component of a robot collides with another component
of the robot. We found a self-collision bug in the open source
Niryo One system, where an invalid input on the /joy ROS
topic caused the robot’s arm to collide with its body. This is
shown in Figure 1. When this invariant is violated outside of
simulation, it may result in permanent and costly damage to
the robot. In fact, such an invariant violation was discovered in
System E and reported to the development team, but it went
unfixed and eventually did occur during use of the system,
indeed resulting in irreparable damage to an end effector.

Checking this invariant is a little more complex than check-
ing limits, because it involves defining bounding boxes around
the components of the robot and using the simulator to check if
these boxes intersect. However, violation of this invariant can
cause significant damage to the robot, or require expensive
repairs to any hardware fail-safe mechanisms. Because it is
very likely that one safety requirement of a robot with an
articulating arm is for that arm not to hit the robot, effort

43

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 13,2021 at 17:06:14 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Niryo arm self-collision

should be put into writing this invariant checker for testing
any robot where self collision is a potential hazard.

D. More complex safety cases and discussion

The examples above show how even simple invariants can
be violated in production systems, and how these violations
may present more direct safety risks than just software crashes.
Even so, they serve merely as a starting point for thinking
about invariants that can be used for testing autonomy systems.
A healthy project development process for autonomy systems
must include a well-defined safety specification [8]. This safety
specification may include more complex rules, involving tem-
poral and stateful requirements, such as a robot being required
to reach full stop within two seconds of the emergency brake
being engaged.

In general, invariants for testing should come from the
safety requirements and physical limitations of the system.
For the open source systems that we tested, we directly
referenced the online documentation to derive our invariants.
Beyond the examples discussed above, pattern repositories,
such as Dwyer et al.’s “Property Specification Patterns” [9] and
Kane’s specification patterns [10], provide starting points for
thinking about checkable safety properties. We hope that these
examples provide guidance for engineers to write thorough
and quantifiable safety specifications when designing their
systems, for testers to write thorough invariant checkers, and
for the two parties to communicate.

V. CONCLUSION

In this paper, we argue that checking invariants that test
for safety property violations is imperative for testing auton-
omy software. The typical approach of using unit tests that
check for functional correctness, or robustness tests that only
check for software crashes, is necessary, but not sufficient for
ensuring system safety. This is because autonomy systems
are cyber-physical systems that have temporal and physical
requirements which are often part of the safety requirements
of the systems.

We have shown empirical evidence that, when testing the
robustness of autonomy software, checking safety invariants
allowed robustness testing to find more bugs than could be
found when checking solely for crashes. In some systems,
a majority of bugs would not have been found without an

invariant checker. Additionally, every system tested exhibited
at least one violation of safety properties, but not all exhibited
software crashes. These bugs may be even more severe than
software crashes in terms of cost or liability, because, by
definition, they put the system in an unsafe state. This leads
us to conclude that checking solely for software crashes
is not sufficient for testing the robustness of cyber-physical
systems, and that robustness testing must include the use of
invariant checkers to sufficiently meet the safety requirements
of autonomy system software.

Safety standards for autonomy systems require both fault
injection testing and run-time monitoring. While the use of
run-time motoring in conjunction with fault injection is not
required, using run-time monitoring to provide assurances
that safety goals are still being met in the presence of faults
provides substantial evidence towards a safety case, without
incurring significant extra cost. Our work shows that doing
so is effective for autonomy systems, as long meaningful
invariants from the safety specification are used when run-
time monitoring.

We described common invariants that can apply to a variety
of autonomy systems, and referenced more complete libraries
of safety requirement patterns. Testers and developers should
use these resources as a starting point for their own systems.
Ultimately, a safety-oriented testing and development setup for
an autonomy system project involves considerations to safety
at all steps, starting with writing a safety specification that
can be used to write safety invariants for thorough testing.
Testing-based validation of a well-developed safety case is an
important part of guarding against disastrous failures when a
robotics system is deployed.

REFERENCES

[1] C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner,
C. Le Goues, and P. Koopman, “Robustness testing of autonomy soft-
ware,” in Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice. ACM, 2018, pp. 276–
285.

[2] P. Koopman, K. DeVale, and J. DeVale, “Interface robustness testing:
Experience and lessons learned from the ballista project,” Dependability
Benchmarking for Computer Systems, vol. 72, p. 201, 2008.

[3] L. Fix, “Fifteen years of formal property verification in Intel,” in 25
Years of Model Checking. Springer, 2008, pp. 139–144.

[4] K. Y. Rozier, “Linear temporal logic symbolic model checking,”
Computer Science Review, vol. 5, no. 2, pp. 163–203, 2011.

[5] A. Kane, O. Chowdhury, A. Datta, and P. Koopman, “A case study on
runtime monitoring of an autonomous research vehicle (arv) system,” in
Runtime Verification. Springer, 2015, pp. 102–117.

[6] P. Koopman and M. Wagner, “Challenges in autonomous vehicle testing
and validation,” SAE International Journal of Transportation Safety,
vol. 4, no. 1, pp. 15–24, 2016.

[7] U. Laboratories, UL 4600: Standard for Evaluation of Autonomous
Products, ser. Standard for safety. Underwriters Laboratories, 2020.

[8] P. Koopman, Better embedded system software. Drumnadrochit Edu-
cation, 2010.

[9] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property
specifications for finite-state verification,” in Proceedings of the 21st
international conference on Software engineering, 1999, pp. 411–420.

[10] A. Kane, “Runtime monitoring for safety-critical embedded systems,”
Ph.D. dissertation, Carnegie Mellon University Pittsburgh, PA, 2015.

44

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 13,2021 at 17:06:14 UTC from IEEE Xplore. Restrictions apply.

		2021-09-01T00:10:39-0400
	Preflight Ticket Signature

