
Defending Against the Attack of the Micro-clones
Rijnard van Tonder, Claire Le Goues

Carnegie Mellon University
rvt@cmu.edu, clegoues@cs.cmu.edu

Abstract—Micro-clones are small pieces of redundant code,
such as repeated subexpressions or statements. In this paper,
we establish the considerations and value toward automated
detection and removal of micro-clones at scale. We leverage the
Boa software mining infrastructure to detect micro-clones in a
data set containing 380,125 Java repositories, and yield thousands
of instances where redundant code may be safely removed. By
filtering our results to target popular Java projects on GitHub,
we proceed to issue 43 pull requests that patch micro-clones. In
summary, 95% of our patches to active GitHub repositories are
merged rapidly (within 15 hours on average). Moreover, none of
our patches were contested; they either constituted a real flaw,
or have not been considered due to repository inactivity. Our
results suggest that the detection and removal of micro-clones is
valued by developers, can be automated at scale, and may be
fixed with rapid turnaround times.

I. INTRODUCTION

Developers often copy-paste code when programming [1].
This behavior sometimes results in large blocks of cloned
code [2]. Other times, the repeated segment is quite small,
sometimes referred to as a micro-clone [3]. Although this type
of repetition can be benign, it can also have serious security
implications. Consider the Apple “goto fail” vulnerability [4]:�
if ((err = SSLHashSHA1.update(&hashCtx, &signedParams)) != 0)
goto fail;
goto fail;

if ((err = SSLHashSHA1.final(&hashCtx, &hashOut)) != 0)
goto fail;� �

Fig. 1. Apple goto-fail vulnerability.

Here, the second goto statement is not bound by the if
conditional; it is executed unconditionally and introduces a
vulnerability that compromises the security of SSL/TLS. The
fact that such a seemingly innocuous (and likely) copy-paste
mistake could have such grave impact alarmed many.

Despite the fact that micro-clones are easy to recognize
and are often amenable to straightforward fixes, they continue
to persist in thousands of software artifacts, including high-
profile codebases. Researchers in both academia and industry
have produced effective solutions, including IDE integrations,
to mitigate cloning during development [1, 5, 6]. However,
there is a lack of open source tools that can address legacy
micro-clones in open source repositories at scale. We observe
that the combined advent of large-scale software mining
infrastructures [7] and open source hosting sites such as GitHub,
offers a key opportunity to solve this problem by detecting
micro-clones at scale and then automatically patching them.
We therefore investigate three broad questions with respect to
legacy micro-clones in open source code:

1) Can micro-clones be effectively detected at scale?
2) To what extent can they be remediated automatically or

pseudo-automatically?
3) Is the detection and removal of micro-clones valued by

open source software maintainers?
The term “micro-clone” was introduced in previous work [3].

The premise of this previous work is orthogonal to ours, focus-
ing on the “Last Line” effect,1 but still suggested that micro-
clones are “worth fixing” on the basis of 202 detections in 208
open source projects. We go further by presenting, to the best
of our knowledge, the first principled investigation of detection
and remediation of micro-clones at scale. Moreover, we analyze
the results of suggesting patches to active repositories to inform
a potentially automatic procedure. Our contributions:

• We present an open source solution that automatically
detects micro-clones at scale. Our data set and results are
two orders of magnitude larger than previous work [3].

• We deliver insights towards fully automatic repair of micro-
clones in actively developed software, using our patch
history serves as reference case study. For instance, 76%
of our accepted patches trivially remove micro-clones (and
do not require complex modification).

• We present an empirical evaluation of our approach to
substantiate the value of detecting and fixing micro-clones.
We made 43 meaningful contributions to 38 repositories.
95% of our contributions to active repositories were
accepted rapidly, averaging a time of 15 hours from being
requested to being merged.

II. APPROACH

A. Micro-clone Detection

Our first goal is to automatically detect micro-clones in real
world software at scale. By definition, micro-clones are short
type-2 clones, or “syntactically identical” expressions [2]. We
implemented detection schemes for five micro-clone classes
taken from an established commercial-based solution, PVS-
Studio [8]. PVS-Studio is the only tool to our knowledge that
distinctly classifies micro-clones. Our selection covers micro-
clones at incremental granularities, from subexpressions to
complete methods. Table I describes these classes, including
real examples from our findings as illustration.

To demonstrate feasibility at scale, we leverage the Boa [7]
software mining infrastructure, which provides a data set
spanning millions of GitHub repositories, and a domain-specific
language (DSL) that supports custom analyses over this data

1Micro-clones are most likely to occur in the last line/statement of a program.

978-1-5090-1428-6/16/$31.00 ©2016 IEEE ICPC 2016, Austin, Texas 1

TABLE I
MICRO-CLONE DESCRIPTIONS AND EXAMPLES.

Abbrev PVS Code Duplicate element Example

Binop (V501) Binary operator subexpression. if(jsonSourceFileName != null && jsonSourceFileName != null){...}

CondExp (V517) Conditional expression in an if-else-if. if (this.value < other.getValue())return -1;

else if (this.value < other.getValue())return 0;

Stmt (V519) Consecutive statements. lights = new Environment();

lights = new Environment();

CondBody (V523) Conditional bodies. if (...)return NumberFormat.getNumberInstance().format(rv);

else if (...)return NumberFormat.getNumberInstance().format(rv);

Method (V524) Method signature and body. static _EOTimer access000(_TimerThread x0){ return null; }

. . .
static _EOTimer access000(_TimerThread x0){ return null; }

set. We studied the Boa September 2015/GitHub data set, which
contains the parsed abstract syntax trees for all Java files in
380,125 Java repositories on GitHub. We use Boa’s DSL to
detect micro-clones by performing equivalence checking on
ASTs. Our static analysis therefore comprises a collection of
scripts in the Boa DSL, which we make available.2 Since
Boa is an open platform, users may customize or create
additional scripts for detecting different types of micro-clones;
an additional benefit over closed-source solutions [8].

Scope of detection. We implemented several checks to
obtain greater precision in detecting micro-clones which
are easily remediated: (1) We only consider the operators
|,&,||,&&,<,>,<=,>= for Binop clones. (2) For Stmt
clones, we do not consider duplicated assignment statements
that contain the left-hand side variable in the right-hand side
expression. (3) For CondExp, Stmt, and CondBody, we
prioritize expressions that do not contain methods (which may
have side-effects). (4) For CondBody and Method, we ignore
empty conditional bodies.

B. Micro-clone Patches

Our foremost objective in constructing and issuing micro-
clone patches is to assess whether software maintainers value
such contributions. This lays groundwork for motivating an
automatic patching procedure to remediate legacy micro-clones.
Accepted patches thus inform analysis of which micro-clones
are amenable to automatic patching, and speculate impact.

Our goals impose several considerations on our patching
procedure. First, we must propose patches in a way that
allows developers to correct instances of micro-clones rapidly,
conveniently, and correctly. This sentiment draws on previous
work [9], which substantiates that developers value non-
intrusive patches if there are no drawbacks (including conve-
nience and mental strain). Second, we sought to maximize the
probability that issued pull requests would actually be reviewed.
We therefore limited pull requests to popular repositories,
measured by number of stars (user favorites). We heuristically
elected a lower bound of 40 stars for Java repositories. Our
patch workflow then proceeded as follows:

2https://github.com/kilida/boa-scripts

1) Sort Boa output of micro-clones by repository popularity,
and determine whether the file still exists in the master
branch through the GitHub web interface.

2) Consult the Boa output to determine the micro-clone
location (note that Boa does not store line numbers in the
AST representation). As an example, our Binop output
pinpoints the position of a duplicated variable. The Stmt
output indicates the duplicate variable name.

3) Use GitHub’s web-interface to edit the file directly in-
browser.

Step 1 was automatic; Step 2 was semi-automatic in
pinpointing location. Step 3 required some minimal manual
effort, as all patches reduce to one of two mechanical actions:

• REM: Delete the micro-clone, which preserves code seman-
tics. In the Binop example of Table I, this corresponds
to deleting the text && jsonSourceFileName != null .

• MOD: Modify a micro-clone, depending on context. This
action is sometimes required for the Binop, CondExp,
and Stmt categories. Such changes were inferred from the
context of the micro-clone or from developer suggestions,
and in our cases amounted only to variable renaming.

Intuitively, REM patches only ever remove program elements
based on duplicate nodes in the associated AST structure, and
thus can be straightforwardly automated. We present additional
insight and analysis of REM and MOD patches, along with
examples, in Section III. Finally, we emphasize that all of our
patches were issued solely through GitHub’s web-interface, a
testament to the simplicity of fixing micro-clones.

III. RESULTS

A. Micro-clone Detection

Our analysis detects thousands of instances of micro-clones,
summarized in the first three columns of Table II. We ran
our Boa scripts over 380,125 Java repositories; all completed
within one hour. We therefore expect our analysis to scale
well to any particular project. Each detected micro-clone is
unique. We also list the number of unique repositories in which
we detected clones, since some repositories introduce many
uninteresting clones. For example, a single repository accounts
for 264 entries in the Method category, due to duplicate files.

While all entries are accurate in the sense that they truly

2

identify duplicated code, not all correspond to a fixable flaw.
Some micro-clones are intentional, occurring in test cases. For
example, we ran into some test cases for clone detection tools.
Thus, our results present a conservative overapproximation of
the fixable micro-clones that we wish to remediate in practice.

TABLE II
MICRO-CLONE DETECTION AND PATCH RESULTS.

Micro-clones Pull Requests
Unique Total Merged

Type Count Repos REM MOD REM MOD

Binop 4,825 2,204 9 7 7 3
CondExp 1,412 1,354 2 2 - 1
Stmt 4,281 3,182 14 3 6 1
CondBody 13,296 8,351 5 1 3 -
Method 490 103 - - - -

Total 24,304 12,141 30 13 16 5

The CondBody category dominates the results, due to a
common coding idiom we observed in many projects. Consider
the following example from our results:�

1 if (inspector.getGetterMethods().get(fieldName) != null) {
2 // field without setter
3 return null;
4 } else { // public field
5 return null;
6 }� �

Fig. 2. A Repeated Conditional Body.

The programmer wants the same behavior to be executed
under various conditions, but explicitly enumerates those con-
ditions rather than combining them into a single conditional, to
support their mental model of the code. As Figure 2 illustrates,
we noted that this idiom is often accompanied by clarifying
comments. Such instances are correctly flagged as micro-clones
and could be automatically corrected in a semantics-preserving
way. However, this compiler-like optimization comes at the
risk of disrupting the programmer’s mental model of the code.
We did not propose this type of intrusive corrections unless
the conditional expressions were also duplicated.

By contrast, our check for equivalent methods (Method) did
not reveal many entries. Although we found micro-clones that
could be patched, none occurred in active, popular repositories.
Method stubs are a common cause of duplication; false positives
include equivalent methods that are part of test cases.

B. Micro-clone Patches

Using the Boa output, we issued pull requests to every
open source project on GitHub that met our criteria of being
active and popular. We issued 43 pull requests to 38 unique
repositories. All repositories to which we submitted pull
requests lie in the upper 92nd percentile of Java repositories
with one or more star, and in the upper 99th percentile of
Java repositories with zero or more stars. The most popular
repository we contributed to, libgdx, is ranked 22nd on
GitHub with 8,584 stars, and 10th in the number of user forks.

The lower bound of the percentile is determined by a project
with 46 stars. Table II summarizes the result of patches: 21
pull requests were accepted. Investigating the 22 unmerged
pull requests, we note that the implicated repositories had low
levels of activity: none of them had merged commits or pull
requests for at least two weeks prior to our interation. For
some, months had passed since the most recent pull request
was merged. We thus ascribe the lack of review of many of our
unmerged pull requests to temporary or permanent inactivity.
Under this criterion, we consider 18 projects of 38 to be active,
having had a commit or pull request within the recent two
weeks of our pull request submission.

Sentiment Toward Patches. Assuming an accurate, fully
automated solution to micro-clones, we want to know whether
software maintainers value such contributions to their codebases.
Our results support the affirmative: 20 of 21 patches to 18
unique active repositories were accepted. All patches were
merged within 15 hours, on average. Patch #21 is an outlier,
and was accepted to an additional repository after three days.

Micro-clone patches exhibit attractive attributes that posi-
tively distinguish them from other pull requests. First, they
appear more likely to be merged than larger pull requests: 14 out
of 18 repositories have pull requests which maintainers are not
willing to merge, yet our changes were accepted. Importantly,
we observed no cases in which another open pull request
was merged but ours was not. Moreover, some contribution
guidelines require opening a JIRA ticket before submitting
a pull request. In light of micro-clones, this prompted one
maintainer to ask “Do we really need JIRAs even for such
simple and obvious changes?”. We observed that for the four
repositories stipulating this guideline, the requirement for us
to open a ticket was lifted.

Ten developers expressed gratitude after merging our pull
requests, including comments such as “Nice find!”. The rest
were merged silently. Three pull requests contained developer
comments suggesting a variable renaming. In summary, all
pull requests were acknowledged as real issues, and all but
one were rapidly integrated into the codebase.

Patch Distribution. In assessing our ability to automate
patches, we considered the actions required to construct patches,
whether REM or MOD. Our results are summarized in Table II.
With respect to the REM column of merged pull requests, we
issued 19 patches that trivially remove micro-clones. However,
three of these instances in fact required a MOD action, based
on developer feedback. In these cases, developers suggested a
renaming of variables, much like the fix in Figure 3, instead of
removal. Overall, the majority of our pull requests (76%) are
in the REM category, and were merged without any interaction.

Qualitative Considerations. Based on our patch history, we
qualitatively observe several traits of micro-clones that have
bearing toward fully automated patching. First, the most
obvious and trivial occurrences are duplicated statements Stmt
with Java primitives on the right hand side. Since primitives
have no side-effects, (i.e. duplication does not have semantic

3

implications), such statements can be detected and removed
entirely automatically.

For subexpressions (BINOP), checks against boolean prim-
itives, null, enum constants, and instanceof are likely
candidates for automatic removal. However, subexpressions
containing methods (which may have side effects), or even
checks on integer types raise a complication. For instance,
consider the following patch we issued:�

1 - if(i1 == -1 || i1 == -1) {
2 + if(i1 == -1 || i2 == -1) {
3 i = Math.max(i1, i2);
4 }� �

Fig. 3. A Simple Micro-clone Patch.

A human-in-the-loop can easily infer the change from i1 to
i2 based on the use of i2 in line 3. Even for simple integer
comparisons, additional reasoning on variable usage is required
in an automated approach. Although removing the additional
subexpression is clearly semantics-preserving, doing so does not
capture the desired change. Nevertheless, a promising result is
that the cases which we have identified as being most amenable
to automated patching (Binop and Stmt) also constitute the
largest portion of feasible pull requests.

IV. THREATS AND LIMITATIONS

Large-scale detection of micro-clones is susceptible to
producing false positives not easily distinguishable from real
issues. For example, we found test cases that polluted our raw
results. However, anecdotally, our heuristics address this issue.

Pull requests on social hosting sites can be valued for their
contribution to the community spirit. A risk to the validity
of our observations on the value of our patches based on our
interactions with GitHub repositories is that they were accepted
for social rather than technical reasons. However, we observe
that maintainers of the repositories we targeted use discretion
in considering pull requests: only four of the 18 repositories
which merged our patches had no outstanding pull requests.
Moreover, we observed that developers may suggest fixing
changes based on our MOD actions. Hence, thought was given
to proposed patches and not blindly accepted.

Some limitations to our solution are imposed by the
Boa infrastructure. Boa operates over a snapshot of GitHub
repositories from 2015. Inaccuracies in the analysis may result
purely because code, files, or projects have changed. However,
this limitation does not undermine our approach in terms of
scalability. Second, the Boa infrastructure currently only parses
Java. Boa’s language-agnostic DSL is promising for extending
our analysis to other languages such as C or Python, were
ASTs available; we have no reason to believe that our approach
would not generalize accordingly.

V. CONCLUSION

We presented a solution for detecting micro-clones at scale,
and established the utility of the results for automatically
remediating them. Using Boa, we found thousands of valid
micro-clones in 380,125 Java repositories. Furthermore, we

made 43 meaningful contributions to 38 repositories, and
observed a rapid acceptance rate of 95% for pull requests issued
to active repositories. Our results suggest that micro-clones
can be detected effectively at scale, and that this capability can
be leveraged to facilitate rapid, automatic removal of legacy
micro-clones which continue to persist in high-profile software.

VI. ACKNOWLEDGEMENTS

This research was funded in part by the Air Force under
Contract #FA8750-15-2-0075 and by the US Department of
Defense through the Systems Engineering Research Center
(SERC), Contract H98230-08-D-0171. Any opinions, findings,
or recommendations expressed are those of the authors and do
not necessarily reflect those of the US Government.

REFERENCES

[1] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and
H. Mei, “Predicting consistency-maintenance requirement
of code clones at copy-and-paste time,” IEEE Transactions
on Software Engineering, vol. 40, no. 8, pp. 773–794,
2014.

[2] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach,” Sci. Comput. Program.,
vol. 74, pp. 470–495, 2009.

[3] M. Beller, A. Zaidman, and A. Karpov, “The last line
effect,” in International Conference on Program Compre-
hension, ser. ICPC ’15, 2015, pp. 240–243.

[4] Adam Langley, “Apple’s SSL/TLS bug,” https://www.
imperialviolet.org/2014/02/22/applebug.html, 2014, on-
line; accessed 3/26/16.

[5] Microsoft, “Finding Duplicate Code by using Code
Clone Detection,” https://msdn.microsoft.com/en-us/
library/hh205279.aspx, 2015, online; accessed 3/26/16.

[6] Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and
W. Zhao, “Detecting differences across multiple instances
of code clones,” in International Conference on Software
Engineering, ser. ICSE ’14, 2014, pp. 164–174.

[7] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen, “Boa:
A language and infrastructure for analyzing ultra-large-
scale software repositories,” in International Conference
on Software Engineering, 2013, pp. 422–431.

[8] “PVS-Studio,” http://www.viva64.com/en/pvs-studio/,
2016, online; accessed 3/26/16.

[9] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu, “Caramel:
detecting and fixing performance problems that have non-
intrusive fixes,” in International Conference on Software
Engineering, 2015, pp. 902–912.

[10] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard:
Scalable and accurate tree-based detection of code clones,”
in International Conference on Software Engineering, ser.
ICSE ’07, 2007, pp. 96–105.

[11] S. Thummalapenta, L. Cerulo, L. Aversano, and
M. Di Penta, “An empirical study on the maintenance
of source code clones,” Empirical Software Engineering,
vol. 15, no. 1, pp. 1–34, 2010.

4

