
1 SOSRepair: Expressive Semantic Search
2 for Real-World Program Repair
3 Afsoon Afzal , Manish Motwani , Kathryn T. Stolee ,Member, IEEE,

4 Yuriy Brun , Senior Member, IEEE, and Claire Le Goues ,Member, IEEE

5 Abstract—Automated program repair holds the potential to significantly reduce softwaremaintenance effort and cost. However, recent

6 studies have shown that it often produces low-quality patches that repair some but break other functionality. We hypothesize that

7 producing patches by replacing likely faulty regions of code with semantically-similar code fragments, and doing so at a higher level of

8 granularity than prior approaches can better capture abstraction and the intended specification, and can improve repair quality. We

9 create SOSRepair, an automated program repair technique that uses semantic code search to replace candidate buggy code regions

10 with behaviorally-similar (but not identical) codewritten by humans. SOSRepair is the first such technique to scale to real-world defects

11 in real-world systems. On a subset of theManyBugs benchmark of such defects, SOSRepair produces patches for 22 (34%) of

12 the 65 defects, including 3, 5, and 6 defects for which previous state-of-the-art techniques Angelix, Prophet, andGenProg do not,

13 respectively. On these 22 defects, SOSRepair producesmore patches (9, 41%) that pass all independent tests than the prior techniques.

14 Wedemonstrate a relationship between patch granularity and the ability to produce patches that pass all independent tests.We then

15 show that fault localization precision is a key factor in SOSRepair’s success. Manually improving fault localization allows SOSRepair to

16 patch 23 (35%) defects, of which 16 (70%) pass all independent tests.We conclude that (1) higher-granularity, semantic-based patches

17 can improve patch quality, (2) semantic search is promising for producing high-quality real-world defect repairs, (3) research in fault

18 localization can significantly improve the quality of program repair techniques, and (4) semi-automated approaches in which developers

19 suggest fix locationsmay produce high-quality patches.

20 Index Terms—Automated program repair, semantic code search, patch quality, program repair quality, SOSRepair

Ç

21 1 INTRODUCTION

22 AUTOMATED program repair techniques (e.g., [8], [15],
23 [16], [19], [20], [39], [44], [45], [46], [49], [55], [58],
24 [59], [64], [79], [91], [94], [97], [110], [112]) aim to auto-
25 matically produce software patches that fix defects. For
26 example, Facebook uses two automated program repair
27 tools, SapFix and Getafix, in their production pipeline to
28 suggest bug fixes [60], [83]. The goal of automated pro-
29 gram repair techniques is to take a program and a suite
30 of tests, some of which that program passes and some of
31 which it fails, and to produce a patch that makes the pro-
32 gram pass all the tests in that suite. Unfortunately, these
33 patches can repair some functionality encoded by the
34 tests, while simultaneously breaking other, undertested
35 functionality [85]. Thus, quality of the resulting patches
36 is a critical concern. Recent results suggest that patch
37 overfitting—patches that pass a particular set of test

38cases supplied to the program repair tool but fail to gen-
39eralize to the desired specification—is common [47], [57],
40[76], [85]. The central goal of this work is to improve the
41ability of automated program repair to produce high-
42quality patches on real-world defects.
43We hypothesize that producing patches by (1) replacing
44likely faulty regions of code with semantically-similar code
45fragments, and (2) doing so at a higher level of granularity
46than prior approaches can improve repair quality. There are
47two underlying reasons for this hypothesis:

481) The observation that human-written code is highly
49redundant [4], [13], [14], [25], [61], suggesting that,
50for many buggy code regions intended to implement
51some functionality, there exist other code fragments
52that seek to implement the same functionality, and at
53least one does so correctly.
542) Replacing code at a high level of granularity (e.g.,
55blocks of 3–7 consecutive lines of code) corresponds
56to changes at a higher level of abstraction, and is
57thus more likely to produce patches that correctly
58capture the implied, unwritten specifications under-
59lying desired behavior than low-level changes to
60tokens or individual lines of code.
61For example, suppose a programhas a bug in a loop that is
62intended to sort an array. First, consider another, semanti-
63cally similar loop, from either the same project, or some other
64software project. The second loop is semantically similar to
65the buggy loop because, like the buggy loop, it sorts some

� A. Afzal and C. Le Goues are with the School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA 15213.
E-mail: {afsoona, clegoues}@cs.cmu.edu.

� M.Motwani and Y. Brun are with the College of Information and Computer
Sciences, University ofMassachusetts Amherst, Amherst,MA 01003-9264.
E-mail: {mmotwani, brun}@cs.umass.edu.

� K. T. Stolee is with the Department of Computer Science, North Carolina
State University, Raleigh, NC 27695-8206. E-mail: ktstolee@ncsu.edu.

Manuscript received 21 Dec. 2018; revised 21 June 2019; accepted 13 Aug.
2019. Date of publication 0 . 0000; date of current version 0 . 0000.
(Corresponding author: Afsoon Afzal.)
Recommended for acceptance by E. Bodden.
Digital Object Identifier no. 10.1109/TSE.2019.2944914

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019 1

0098-5589� 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0003-1942-6573
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0001-5129-3980
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-0584-7094
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0003-3027-7986
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0002-3931-060X
https://orcid.org/0000-0002-3931-060X
mailto:A. Afzal and C. Le Goues are with the School of Computer ScienceCarnegie Mellon UniversityPittsburghPA15213USA
mailto:M. Motwani and Y. Brun are with the College of Information and Computer SciencesUniversity of Massachusetts AmherstAmherstMA01003-9264USA
mailto:K. T. Stolee is with the Department of Computer ScienceNorth Carolina State UniversityRaleighNC27695-8206USA

66 arrays correctly. At the same time, the second loop may not
67 be semantically identical to the buggy loop, especially on the
68 inputs that the buggy loop mishandles. We may not know a
69 priori if the second, similar loop is correct. However, sorting
70 is a commonly implemented subroutine. If we try to replace
71 the buggy code with several such similar loops, at least one
72 is likely to correctly sort arrays, allowing the program to pass
73 the test cases it previously failed. In fact, the high redun-
74 dancy present in software source code suggests such com-
75 monly implemented subroutines are frequent [4], [13], [14],
76 [25]. Second, we posit that replacing the entire loop with a
77 similar one is more likely to correctly encode sorting than
78 what could be achieved by replacing a + with a -, or inserting
79 a single line of code in themiddle of a loop.
80 Our earlier work on semantic-search-based repair [38]
81 presented one instance that demonstrated that higher-
82 granularity, semantic-based changes can, in fact, improve
83 quality. On short, student-written programs, on average, Sear-
84 chRepair patches passed 97.3% of independent tests not used
85 during patch construction. Meanwhile, the relatively lower-
86 granularity patches produced by GenProg [49], TrpAutoRe-
87 pair [75], and AE [107] passed 68.7, 72.1, and 64.2%, respec-
88 tively [38]. Unfortunately, as we describe next, SearchRepair
89 cannot apply to large, real-world programs.
90 This paper presents SOSRepair, a novel technique that
91 uses input-output-based semantic code search to automati-
92 cally find and contextualize patches to fix real-world
93 defects. SOSRepair locates likely buggy code regions, identi-
94 fies similarly-behaving fragments of human-written code,
95 and then changes the context of those fragments to fit the
96 buggy context and replace the buggy code. Semantic code
97 search techniques [77], [88], [89], [90] find code based on a
98 specification of desired behavior. For example, given a set
99 of input-output pairs, semantic code search looks for code

100 fragments that produce those outputs on those inputs.
101 Constraint-based semantic search [88], [89], [90] can search
102 for partial, non-executable code snippets. It is a good fit for
103 automated program repair because it supports searching
104 for code fragments that show the same behavior as a buggy
105 region on initially passing tests, while looking for one that
106 passes previously-failing tests as well.
107 While SOSRepair builds on the ideas from SearchRe-
108 pair [38], to make SOSRepair apply, at scale, to real-world
109 defects, we redesigned the entire approach and developed a
110 conceptually novel method for performing semantic code
111 search. The largest program SearchRepair has repaired is a
112 24-line C program written by a beginner programmer to
113 find the median of three integers [38]. By contrast, SOSRe-
114 pair patches defects made by professional developers in
115 real-world, multi-million-line C projects. Since SearchRepair
116 cannot run on these real-world defects, we show that SOS-
117 Repair outperforms SearchRepair on the IntroClass bench-
118 mark of small programs.
119 We evaluate SOSRepair on 65 real-world defects of 7
120 large open-source C projects from the ManyBugs bench-
121 mark [48]. SOSRepair produces patches for 22 defects,
122 including 1 that has not been patched by prior techniques
123 (Angelix [64], Prophet [58], and GenProg [49]). We evalu-
124 ate patch quality using held-out independent test
125 suites [85]. Of the 22 defects for which SOSRepair produces
126 patches, 9 (41%) pass all the held-out tests, which is more

127than the prior techniques produce for these defects.
128On small C programs in the IntroClass benchmark [48],
129SOSRepair generates 346 patches, more than SearchRe-
130pair [38], GenProg [49], AE [108], and TrpAutoRepair [75].
131Of those patches, 239 pass all held-out tests, again, more
132than the prior techniques.
133To make SOSRepair possible, we make five major contri-
134butions to both semantic code search and program repair:

1351) A more-scalable semantic search query encoding. We
136develop a novel, efficient, general mechanism for
137encoding semantic search queries for program repair,
138inspired by input-output component-based program
139synthesis [35]. This encoding efficientlymaps the can-
140didate fix code to the buggy context using a single
141query over an arbitrary number of tests. By contrast,
142SearchRepair [38] required multiple queries to cover
143all test profiles and failed to scale to large code data-
144bases or queries covering many possible permuta-
145tions of variable mappings. Our new encoding
146approach provides a significant speedup over the
147prior approach, andwe show that the speedup grows
148with query complexity.
1492) Expressive encoding capturing real-world program behav-
150ior. To apply semantic search to real-world programs,
151we extend the state-of-the-art constraint encoding
152mechanism to handle real-world C language con-
153structs and behavior, including structs, pointers, mul-
154tiple output variable assignments, console output,
155loops, and library calls.
1563) Search for patches that insert and delete code. Prior seman-
157tic-search-based repair could only replace buggy code
158with candidate fix code to affect repairs [38]. We
159extend the search technique to encode deletion and
160insertion.
1614) Automated, iterative search query refinement encoding
162negative behavior.We extend the semantic search
163approach to include negative behavioral examples,
164making use of that additional information to refine
165queries. We also propose a novel, iterative, counter-
166example-guided search-query refinement approach
167to repair buggy regions that are not covered by the
168passing test cases. When our approach encounters
169candidate fix code that fails to repair the program, it
170generates new undesired behavior constraints from
171the new failing executions and refines the search
172query, reducing the search space. This improves on
173prior work, which could not repair buggy regions
174that no passing test cases execute [38].
1755) Evaluation and open-source implementation. We imple-
176ment and release SOSRepair (https://github.
177com/squaresLab/SOSRepair), which reifies the
178above mechanisms. We evaluate SOSRepair on the
179ManyBugs benchmark [48] commonly used in the
180assessment of automatic patch generation tools (e.g.,
181[58], [64], [75], [107]). These programs are four orders of
182magnitude larger than the benchmarks previously
183used to evaluate semantic-search-based repair [38]. We
184show that, as compared to previous techniques applied
185to these benchmarks (Angelix [64], Prophet [58], and
186GenProg [49]), SOSRepair patches one defect none

2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair

187 of those techniques patch, and produces patches of
188 comparable quality to those techniques. We measure
189 quality objectively, using independent test suites held
190 out from patch generation [85]. We therefore also
191 release independently-generated held-out test suites
192 (https://github.com/squaresLab/SOSRepair-
193 Replication-Package) for the defects we use to
194 evaluate SOSRepair.
195 Based on our experiments, we hypothesize that fault
196 localization’s imprecision on real-world defects hampers
197 SOSRepair. We create SOSRepair�, a semi-automated ver-
198 sion of SOSRepair that is manually given the code location in
199 which a human would repair the defect. SOSRepair� produ-
200 ces patches for 23 defects. For 16 (70%) of the defects, the pro-
201 duced patches pass all independent tests. Thus, SOSRepair�

202 is able to produce high-quality patches for twice the number
203 of defects than SOSRepair produces (16 versus 9). This sug-
204 gests that semantic code search holds promise for producing
205 high-quality repairs for real-world defects, perhaps in a
206 semi-automated setting in which developers suggest code
207 locations to attempt fixing. Moreover, advances in auto-
208 mated fault localization can directly improve automated
209 repair quality.
210 To directly test the hypothesis that patch granularity
211 affects the ability to produce high-quality patches, we alter
212 the granularity of code SOSRepair can replace when produc-
213 ing patches, allowing for replacements of 1 to 3 lines, 3 to 7
214 lines, or 6 to 9 lines of code. On the IntroClass benchmark,

215using the 3–7-line granularity results in statistically signifi-
216cantly more patches (346 for 3–7-, 188 for 1–3-, and 211 for 6–
2179-line granularities) and statistically significantly more
218patches that pass all the held-out tests (239 for 3–7-, 120 for
2191–3-, and 125 for 6–9-line granularities).
220The rest of this paper is organized as follows. Section 2
221describes the SOSRepair approach and Section 3 our imple-
222mentation of that approach. Section 4 evaluates SOSRepair.
223Section 5 places our work in the context of related research,
224and Section 6 summarizes our contributions.

2252 THE SOSREPAIR APPROACH

226Fig. 1 overviews the SOSRepair approach. Given a program
227and a set of test cases capturing correct and buggy behavior,
228SOSRepair generates patches by searching over a database of
229snippets of human-written code. Unlike keyword or syntac-
230tic search (familiar to users of standard search engines),
231semantic search looks for code based on a specification of
232desired and undesired behavior. SOSRepair uses test cases
233to construct a behavioral profile of a potentially buggy code
234region. SOSRepair then searches over a database of snippets
235for one that implements the inferred desired behavior,
236adapts a matching snippet to the buggy code’s context, and
237patches the program by replacing the buggy region with
238patch code, inserting patch code, or deleting the buggy
239region. Finally, SOSRepair validates the patched program by
240executing its test cases.
241We first describe an illustrative example and define key
242concepts (Section 2.1). We then detail SOSRepair’s approach
243that (1) uses symbolic execution to produce static behavioral
244approximations of a set of candidate bug repair snippets
245(Section 2.2), (2) constructs a dynamic profile of potentially-
246buggy code regions, which serve as inferred input-output
247specifications of desired behavior (Section 2.3), (3) constructs
248an SMT query to identify candidate semantic repairs to be
249transformed into patches and validated (Section 2.4), and
250(4) iteratively attempts to produce a patch until timeout
251occurs (Section 2.5). This section focuses on the conceptual
252approach; Section 3 will describe implementation details.

2532.1 Illustrative Example and Definitions

254Consider the example patched code in Fig. 2 (top), which we
255adapt (with minor edits for clarity and exposition) from
256php interpreter bug issue #60455, concerning a bug in the
257streamsAPI.1 Bug #60455 reports that streamsmishandles

Fig. 1. Overview of the SOSRepair approach.

Fig. 2. Top: Example code, based on php bug # 60455, in function
stream_get_record. The developer patch modifies the condition on
line 7, shown on line 8. Bottom: A snippet appearing in the php date mod-
ule, implementing the same functionality as the developer patch (note that
just_read is never negative in this code), with different variable names. 1. https://bugs.php.net/bug.php?id=60455

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 3

https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package
https://bugs.php.net/bug.php?id=60455

258 files when the EOF character is on its own line. The fixing
259 commit message elaborates: “stream_get_line misbehaves if
260 EOF is not detected together with the last read.” The change
261 forces the loop to continue such that the last EOF character is
262 consumed. The logic that the developer used to fix this bug is
263 not unique to the stream_get_record function; indeed,
264 very similar code appears in the php datemodule (bottom of
265 Fig. 2). This is not unusual: there exists considerable redun-
266 dancy within and across open-source repositories [4], [25],
267 [33], [96].
268 Let F refer to a code snippet of 3–7 lines of C code. F can
269 correspond to either the buggy region to be replaced or a
270 snippet to be inserted as a repair. In our example bug, a can-
271 didate buggy to-be-replaced region is lines 7–11 in top of
272 Fig. 2; the snippet in the bottom of Fig. 2 could serve as a
273 repair snippet. We focus on snippets of size 3–7 lines of code
274 because patches at a granularity level greater than single-
275 expression, -statement, or -line may be more likely to capture
276 developer intuition, producingmore-correct patches [38], but
277 code redundancy drops off sharply beyond seven lines [25],
278 [33].We also verify these findings by conducting experiments
279 that use code snippets of varying sizes (Section 4.3).
280 F ’s input variables f are those whose values can ever be
281 used (in the classic dataflow sense, either in a computation,
282 assignment, or predicate, or as an argument to a function
283 call); F ’s output variables ~Rf are those whose value may be
284 definedwith a definition that is not killed by the end of the snip-
285 pet. In the buggy region of Fig. 2, f is fjust read; toread;
286 leng; ~Rf is fleng. ~Rf may be of arbitrary size, and f and ~Rf

287 are not necessarily disjoint, as in our example. ~Vf is the set of
288 all variables of interest inF : ~Vf ¼ f [~Rf .
289 To motivate a precise delineation between variable uses
290 and definitions, consider a concrete example that demon-
291 strates correct behavior for the buggy code in Fig. 2: if
292 just_read = 5 and len = 10 after line 6, at line 12, it should
293 be the case that just_read = 5 and len = 15. A naive,
294 constraint-based expression of this desired behavior, e.g.,
295 ðjust read ¼ 5Þ ^ ðlen ¼ 10Þ ^ ðjust read ¼ 5Þ ^ ðlen ¼
296 15Þ is unsatisfiable, because of the conflicting constraints
297 on len.
298 For the purposes of this explanation, we first address the
299 issue by defining a static variable renaming transformation
300 over snippets. Let UfðxÞ return all uses of a variable x in F
301 and DfðxÞ return all definitions of x in F that are not killed.
302 We transform arbitrary F to enforce separation between
303 inputs and outputs as follows:

F0 ¼ F ½UfðxÞ=xi� s:t:x 2 Vf; xi 2 Xin; xi fresh

F t ¼ F 0½DfðxÞ=xi� s:t:x 2 Rf; xi 2 Xout; xi fresh:305305

306

307 All output variables are, by definition, treated also as
308 inputs, and we choose fresh names as necessary. Xin and
309 Xout refer to the sets of newly-introduced variables.

310 2.2 Candidate Snippet Encoding

311 In an offline pre-processing step, we prepare a database of
312 candidate repair snippets of 3–7 lines of C code. This code
313 can be from any source, including the same project, its previ-
314 ous versions, or open-source repositories. A naive lexical
315 approach to dividing code into line-based snippets generates

316many implausible and syntactically invalid snippets, such as
317by crossing block boundaries (e.g., lines 10–12 in the top of
318Fig. 2). Instead, we identify candidate repair snippets from
319C blocks taken from the code’s abstract syntax tree (AST).
320Blocks of length 3–7 lines are treated as a single snippet.
321Blocks of length less than 3 lines are grouped with adja-
322cent blocks. We transform all snippetsF intoF t (Section 2.1).
323In addition to the code itself (pre- and post- transformation)
324and the file in which it appears, the database stores two
325types of information per snippet:

3261) Variable names and types.Patches are constructed at the
327AST level, and are thus always syntactically valid.
328However, they can still lead to compilation errors if
329they reference out-of-scope variable names, user-
330defined types, or called functions. We thus identify
331and store names of user-defined structs and called
332functions (including the file in which they are
333defined). We additionally store all variable names
334from the original snippet F (~Vf , f , ~Rf), as well as their
335corresponding renamed versions inF t (Xin andXout).
3362) Static path constraints. We symbolically execute [12],
337[40] F t to produce a symbolic formula that statically
338overapproximates its behavior, described as con-
339straints over snippet input and outputs. For exam-
340ple, the fix snippet in Fig. 2 can be described as

ððbufflenin > 0Þ ^ ðmylenout ¼ mylenin þ buffleninÞÞ_
ð:ðbufflenin > 0Þ ^ ðmylenout ¼ myleninÞÞ: 342342

343

344We query an SMT solver to determine whether
345such constraints match desired inputs and outputs.
346The one-time cost of database construction is amortized
347across many repair efforts.

3482.3 Profile Construction

349SOSRepair uses spectrum-based fault localization (SBFL) [37]
350to identify candidate buggy code regions. SBFL uses test cases
351to rank program entities (e.g., lines) by suspiciousness. We
352expand single lines identified by SBFL to the enclosing AST
353block. Candidate buggy regions may be smaller than 3 lines if
354no region of fewer than 7 lines can be created by combining
355adjacent blocks.
356Given a candidate buggy region F , SOSRepair constructs
357a dynamic profile of its behavior on passing and failing tests.
358Note that the profile varies by the type of repair, and that
359SOSRepair can either delete the buggy region; replace it with
360a candidate repair snippet; or insert a piece of code immedi-
361ately before it. We discuss how SOSRepair iterates over and
362chooses between repair strategies in Section 2.5. Here, we
363describe profile generation for replacement and insertion
364(the profile is not necessary for deletion).
365SOSRepair first statically substitutesF t forF in the buggy
366program, declaring fresh variables Xin and Xout. SOSRepair
367then executes the program on the tests, capturing the values
368of all local variables before and after the region on all cover-
369ing test cases. (For simplicity and without loss of generality,
370this explanation assumes that all test executions cover all
371input and output variables.) Let Tp be the set of all initially
372passing tests that coverF t and Tn the set of all initially failing
373tests that do so. If t is a test case coveringF t, let valInðt; xÞ be

4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

374 the observed dynamic value of x on test case t before F t is
375 executed and valOutðt; xÞ its dynamic value afterwards. We
376 index each observed value of each variable of interest x by
377 the test execution on which the value is observed, denoted
378 xt. This allows us to specify desired behavior based onmulti-
379 ple test executions or behavioral examples at once. To illus-
380 trate, assume a second passing execution of the buggy region
381 in Fig. 2 on which len is 15 on line 6 and 25 on line 12 (ignor-
382 ing just_read for brevity).

�ðlenin ¼ 10Þ ^ ðlenout ¼
383 15Þ� ^ �ðlenin ¼ 15Þ ^ ðlenout ¼ 25Þ�� is trivially unsatis-

384 fiable;
�ðlenin1 ¼ 10Þ ^ ðlenout1 ¼ 15Þ� ^ �ðlenin2 ¼ 15Þ^

385 ðlenout2 ¼ 25Þ��, which indexes the values by the tests on
386 which they were observed, is not. The dynamic profile is
387 then defined as follows:

P :¼ Pin ^ Pp
out ^ Pn

out:389389

390

391 Pin encodes bindings of variables to values on entry to the
392 candidate buggy region on all test cases; Pp

out enforces the
393 desired behavior of output variables to match that observed
394 on initially passing test cases; Pn

out enforces that the output
395 variables should notmatch to those observed on initially fail-
396 ing test cases. Pin is the same for both replacement and inser-
397 tion profiles

Pin :¼
^

t2Tp[Tn

^
xi2Xin

xt
i ¼ valInðt; xiÞ:

399399

400

401 Pout combines constraints derived from both passing and
402 failing executions, or Pp

out ^ Pn
out. For replacement queries

Pp
out :¼

^
t2Tp

^
xi2Xout

xti ¼ valOutðt; xiÞ

Pn
out :¼

^
t2Tn

:
^

xi2Xout

xt
i ¼ valOutðt; xiÞ

 !
:

404404

405

406 For insertion queries, the output profile specifies that the
407 correct code should simply preserve observed passing behav-
408 ior while making some observable change to initially failing
409 behavior

Pp
out :¼

^
t2Tp

^
xi2Xout

xt
i ¼ valInðt; xiÞ

Pn
out :¼

^
t2Tn

:
^

xi2Xout

xt
i ¼ valInðt; xiÞ

 !
:

411411

412

413 Note that we neither know, nor specify, the correct value
414 for these variables on such failing tests, and do not require
415 annotations or developer interaction to provide them such
416 that they may be inferred.

417 2.4 Query Construction

418 Assume candidate buggy region C (a context snippet), candi-
419 date repair snippet S, and corresponding input variables,
420 output variables, etc. (as described in Section 2.1). Our goal is
421 to determine whether the repair code S can be used to edit
422 the buggy code, such that doing so will possibly address the
423 buggy behavior without breaking previously-correct behav-
424 ior. This task is complicated by the fact that candidate repair
425 snippets may implement the desired behavior, but use the

426wrong variable names for the buggy context (such as in our
427example in Fig. 2). We solve this problem by constructing a
428single SMT query for each pair of C, S, that identifieswhether
429a mapping exists between their variables (~Vc and ~Vs) such
430that the resulting patched code (S either substituted for or
431inserted before C) satisfies all the profile constraints P . An
432important property of this query is that, if satisfiable, the sat-
433isfying model provides a variable mapping that can be used
434to rename S to fit the buggy context.
435The repair search query is thus comprised of three con-
436straint sets: (1) mapping components cmap and cconn, which
437enforce a valid and meaningful mapping between variables
438in the candidate repair snippet and those in the buggy con-
439text, (2) functionality component ffunc, which statically cap-
440tures the behavior of the candidate repair snippet, and (3) the
441specification of desired behavior, captured in a dynamic pro-
442file P (Section 2.3). We now detail the mapping and function-
443ality components, as well as how patches are constructed and
444validated based on satisfiable semantic search SMT queries.

4452.4.1 Mapping Component

446Our approach to encoding semantic search queries for pro-
447gram repair takes inspiration from SMT-based input-output-
448guided component-basedprogramsynthesis [35]. The original
449synthesis goal is to connect a set of components to construct a
450function f that satisfies a set of input-output pairs hai;bii
451(such that 8i; fðaiÞ ¼ bi). This is accomplished by introducing
452a set of location variables, one for each possible component
453and function input and output variable, that define the order
454of and connection between components. Programs are syn-
455thesized by constructing an SMT query that constrains loca-
456tion variables so that they describe a well-formed program
457with the desired behavior on the given inputs/outputs. If
458the query is satisfiable, the satisfying model assigns integers
459to locations and can be used to construct the desired func-
460tion. See the prior work by Jha et al. for full details [35].
461Mapping Queries for Replacement. We extend the location
462mechanism to map between the variables used in a candi-
463date repair snippet and those available in the buggy context.
464We first describe how mapping works for replacement
465queries, and then the differences required for insertion. We
466define a set of locations as

L ¼ flxjx 2 ~Vc [~Vsg: 468468

469

470The query must constrain locations so that a satisfying
471assignment tells SOSRepair how to suitably rename varia-
472bles in S such that a patch compiles and enforces desired
473behavior. The variable mappingmust be valid: Each variable
474in S must uniquely map to some variable in C (but not vice
475versa; not all context snippet variables need map to a repair
476snippet variable). The cmap constraints therefore define an

477injectivemapping from ~Vs to ~Vc

cmap :¼
^

x2~Vc[~Vs
1 � lx � j~Vcj

0
@

1
A

^ distinctðL; ~VcÞ ^ distinctðL; ~VsÞ
distinctðL; ~V Þ :¼

^
x;y2~V ;x6�y

lx 6¼ ly: 479479

480

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 5

481 This exposition ignores variable types for simplicity; in
482 practice, we encode them such that matched variables have
483 the same types via constraints on valid locations.
484 Next, cconn establishes the connection between location
485 values and variable values as well as between input and out-
486 put variables s, ~Rs and their freshly-renamed versions in Xin

487 andXout across all covering test executions t 2 Tp [Tn. This is
488 important because although the introduced variables elimi-
489 nate the problem of trivially unsatisfiable constraints over
490 variables used as both inputs and outputs, naive constraints
491 over the fresh variables — e.g., ðlenin1 ¼ 10Þ ^ ðlenout1 ¼
492 15Þ— are instead trivially satisfiable. Thus

cconn :¼cout ^ cin

cout :¼
^

x2XC
out;y2XS

out

lx ¼ ly)

^jTp[Tn j

t¼1

xt
in ¼ ytin ^ xt

out ¼ ytout

 !

cin :¼
^

x2XC
in
;y2XS

in

lx ¼ ly)
^jTp[Tnj

t¼1

xt
in ¼ ytin

!
:

494494

495

496 Where XC
in and XS

in refer to the variables in the context
497 and repair snippet respectively and xin refers to the fresh
498 renamed version of variable x, stored in Xin (and similarly
499 for output variables).
500 Insertion. Instead of drawing ~Vc from the replacement
501 region (a heuristic design choice to enable scalability), inser-
502 tion queries define ~Vc as the set of local variables live after
503 the candidate insertion point. They otherwise are encoded
504 as above.

505 2.4.2 Functionality Component

506 ffunc uses the path constraints describing the candidate
507 repair snippet S such that the query tests whether S satisfies
508 the constraints on the desired behavior described by the
509 profile constraints P . The only complexity is that we must
510 copy the symbolic formula to query over multiple simulta-
511 neous test executions. Let ’c be the path constraints from
512 symbolic execution. ’cðiÞ is a copy of ’c where all variables

513 xin 2 XS
in and xout 2 XS

out are syntactically replaced with
514 indexed versions of themselves (e.g., xi

in for xin). Then

ffunc :¼
^jTp[Tn j

i¼1

’cðiÞ;
516516

517

518 ffunc is the same for replacement and insertion queries.

519 2.4.3 Patch Construction and Validation

520 The repair query conjoins the above-described constraints

cmap ^ cconn ^ ffunc ^ P:
522522

523 Given S and C for which a satisfiable repair query has been
524 constructed, the satisfying model assigns values to locations
525 in L and defines a valid mapping between variables in the
526 original snippets S and C (rather than their transformed ver-
527 sions). This mapping is used to rename variables in S and
528 integrate it into the buggy context. For replacement edits, the

529renamed snippet replaces the buggy region wholesale; for
530insertions, the renamed snippet is inserted immediately
531before the buggy region. It is possible for the semantic search
532to return satisfying snippets that do not repair the bug when
533executed, if either the snippet fails to address the bug cor-
534rectly, or if the symbolic execution is too imprecise in its
535description of snippet behavior. Thus, SOSRepair validates
536patches by running the patched program on the provided
537test cases, reporting the patch as a fix if all test cases pass.

5382.5 Patch Iteration

539Traversal. SOSRepair iterates over candidate buggy regions
540and candidate repair strategies, dynamically testing all snip-
541pets whose repair query is satisfiable. SOSRepair is parame-
542terized by a fault localization strategy, which returns a
543weighted list of candidate buggy lines. Such strategies can be
544imprecise, especially in the absence of high-coverage test
545suites [87]. To avoid getting stuck trying many patches in the
546wrong location, SOSRepair traverses candidate buggy regions
547using breadth-first search. First, it tries deletion at every
548region. Deletion is necessary to repair certain defects [115],
549though it can also lead to low-quality patches [76]. However,
550simply disallowing deletion does not solve the quality prob-
551lem: even repair techniques that do not formally support dele-
552tion can do so by synthesizing tautological if conditions [56],
553[64]. Similarly, SOSRepair can replace a buggy region with a
554snippet with no effect. Because patches that effectively delete
555are likely less maintainable and straightforward than those
556that simply delete, if a patch deletes functionality, it is better
557to do so explicitly. Thus, SOSRepair tries deleting the candi-
558date buggy region first by replacing it with an empty candi-
559date snippet whose only constraint is TRUE. We envision
560future improvements to SOSRepair that can create and com-
561pare multiple patches per region, preferring those that main-
562tain the most functionality. Next, SOSRepair attempts to
563replace regions with identified fix code, in order of ranked
564suspiciousness; finally, SOSRepair tries to repair regions by
565inserting code immediately before them. We favor replace-
566ment over insertion because the queries aremore constrained.
567SOSRepair can be configured with various database traversal
568strategies, such as trying snippets from the same file as the
569buggy region first, as well as trying up to N returned match-
570ing snippets per edit type per region. SOSRepair then cycles
571through buggy regions and matched snippets N-wise, before
572moving to the next edit type.
573Profile Refinement. Initially-passing test cases partially
574specify the expected behavior of a buggy code region, thus
575constraining which candidate snippets quality to be returned
576by the search. Initially-failing test cases only specify what the
577behavior should not be (e.g., “given input 2, the output should
578not be 4”). This is significantly less useful in distinguishing
579between candidate snippets. Previous work in semantic
580search-based repair disregarded the negative example behav-
581ior in generating dynamic profiles [38]. Such an approach
582might be suitable for small programs with high-coverage test
583suites. Unfortunately, in real-world programs, buggy regions
584may only be executed by failing test cases [87]. We observed
585this behavior in our evaluation on real-world defects.
586To address this problem, other tools, such as Angelix [64],
587require manual specification of the correct values of variables
588for negative test cases. By contrast, we address this problem

6 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

589 in SOSRepair via a novel incremental, counter-example-guided
590 profile refinement for candidate regions that do not have pass-
591 ing executions. Given an initial profile derived from failing
592 test cases (e.g., “given input 2, the output should not be 4”),
593 SOSRepair tries a single candidate replacement snippet S. If
594 unsuccessful, SOSRepair adds the newly discovered unac-
595 ceptable behavior to the profile (e.g., “given input 2, the out-
596 put should not be 6”). Fig. 3 details the algorithm for this
597 refinement process. Whenever SOSRepair tries a snippet and
598 observes that all tests fail, it adds one new negative-behavior
599 constraint to the constraint profile for each failing test. Each
600 constraint is the negation of the observed behavior. For exam-
601 ple, if SOSRepair observes that test t fails, it computes its out-
602 put variable values (e.g., x1 ¼ 3, x2 ¼ 4) and adds the
603 constraint : ðxt

1 ¼ 3Þ ^ ðxt
2 ¼ 4Þ� �

to the profile, which speci-
604 fies that the incorrect observed behavior should not take
605 place. Thus, SOSRepair gradually builds a profile based on
606 negative tests without requiring manual effort. SOSRepair
607 continues on trying replacement snippets with queries that
608 are iteratively improved throughout the repair process.
609 Although this is slower than starting with passing test cases,
610 it allows SOSRepair to patchmore defects.

611 3 THE SOSREPAIR IMPLEMENTATION

612 We implement SOSRepair using KLEE [12], Z3 [21], and the
613 clang [17] infrastructure; the latter provides parsing, name
614 and type resolution, and rewriting facilities, among others.
615 Section 3.1 describes the details of our implementation.
616 Section 3.2 summarizes the steps we took to release our
617 implementation and data, and to make our experiments
618 reproducible.

619 3.1 SOSRepair Implementation Design Choices

620 In implementing SOSRepair, we made a series of design
621 decisions, which we now describe.
622 Snippet Database. SOSRepair uses the symbolic execution
623 engine in KLEE [12] to statically encode snippets. SOSRepair
624 uses KLEE’s built-in support for loops, using a two-second
625 timeout; KLEE iterates over the loop as many times as possi-
626 ble in the allocated time. We encode user-defined struct
627 types by treating them as arrays of bytes (as KLEE does).
628 SOSRepair further inherits KLEE’s built-in mechanisms for
629 handling internal (GNU C) function calls. As KLEE does not
630 symbolically execute external (non GNU C) function calls,
631 SOSRepair makes no assumptions about such functions’

632side-effects. SOSRepair instead makes a new symbolic vari-
633able for each of the arguments and output, which frees these
634variables from previously generated constraints. These fea-
635tures substantially expand the expressive power of the con-
636sidered repair code over previous semantic search-based
637repair. We do sacrifice soundness in the interest of expres-
638siveness by casting floating point variables to integers (this is
639acceptable because unsoundness can be caught in testing).
640This still precludes the encoding of snippets that include
641floating point constants, but future SOSRepair versions can
642take advantage of KLEE’s recently added floating point
643support.
644Overall, we encode snippets by embedding them in a
645small function, called from main, and defining their input
646variables as symbolic (using klee_make_symbolic). We
647use KLEE off-the-shelf to generate constraints for the
648snippet-wrapping function, using KLEE’s renaming facili-
649ties to transform F into F t for snippet encoding. KLEE gen-
650erates constraints for nearly all compilable snippets.
651Exceptions are very rare, e.g., KLEE will not generate con-
652straints for code containing function pointers. However,
653KLEE will sometimes conservatively summarize snippets
654with single TRUE constraints in cases where it can techni-
655cally reason about code but is still insufficiently expressive
656to fully capture its semantics.
657Console Output. Real-world programs often print mean-
658ingful output. Thus, modeling console output in semantic
659search increases SOSRepair applicability. We thus define a
660symbolic character array to represent console output in can-
661didate repair snippets. Because symbolic arrays must be of
662known size, we only model the first 20 characters of output.
663We transform calls to printf and fprintf to call
664sprintf with the same arguments. KLEE handles these
665standard functions natively. We track console output in the
666profile by logging the start and end of the buggy candidate
667region, considering anything printed between the log state-
668ments as meaningful.
669Profile Construction. For consistency with prior work [38],
670we use Tarantula [37] to rank suspicious source lines. We
671leave the exploration of other fault localization mechanisms
672to future work. To focus our study on SOSRepair efficacy
673(rather than efficiency, an orthogonal concern), we assume
674the provision of one buggy method to consider for repair,
675and then apply SBFL to rank lines in the method. Given such
676a ranked list, SOSRepair expands the identified lines to sur-
677rounding regions of 3–7 lines of code, as in the snippet
678encoding step. The size of the region is selected by conduct-
679ing an initial experiment on small programs presented in
680Section 4.3. SOSRepair attempts to repair each correspond-
681ing buggy region in rank order, skipping lines that have
682been subsumed into previously-identified and attempted
683buggy regions.
684Queries and Iteration. Z3 [21] can natively handle integers,
685booleans, reals, bit vectors, and several other common data
686types, such as arrays and pairs. To determine whether a can-
687didate struct type is in scope, we match struct names syntac-
688tically. For our experiments, we construct snippet databases
689from the rest of the program under repair, pre-fix, which
690supports struct matching. Additionally, programs are locally
691redundant [96], and developers are more often right than
692not [22], and thuswe hypothesize that a defectmay be fixable

Fig. 3. Incremental, counter-example profile refinement. REFINEPROFILE

receives a program with the candidate snippet incorporated, a set of
Tests that fail on program, and the set of output variables Xout. It com-
putes new constraints to refine the profile by excluding the observed
behavior. valOutðt; xi; programÞ returns the output value of variable xi

when test t is executed on program.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 7

693 via code elsewhere in the same program. However, this may
694 be unnecessarily restrictive for more broadly-constructed
695 databases. We leave a more flexible matching of struct types
696 to future work. SOSRepair is configured by default to try
697 repair snippets from the same file as a buggy region first, for
698 all candidate considered regions; then the same module;
699 then the same project.

700 3.2 Open-Source Release and Reproducibility

701 To support the reproduction of our results and help research-
702 ers build on our work, we publicly release our implementa-
703 tion: https://github.com/squaresLab/SOSRepair.
704 We also release a replication package that includes all patches
705 our techniques found on the ManyBugs benchmark and
706 the necessary scripts to rerun the experiment discussed in
707 Section 4.4, and all independently generated tests discussed
708 in Section 4.1.2: https://github.com/squaresLab/

709 SOSRepair-Replication-Package.
710 Our implementation includes Docker containers and
711 scripts for reproducing the evaluation results described in
712 Section 4. The containers and scripts use BugZoo [95], a
713 decentralized platform for reproducing and interacting
714 with software bugs. These scripts both generate snippet
715 databases (which our release excludes due to size) and exe-
716 cute SOSRepair.
717 SOSRepair uses randomness to make two choices during
718 its execution: the order in which to consider equally suspi-
719 cious regions returned by SOSRepair’s fault localization, and
720 the order in which to consider potential snippets returned by
721 the SMT solver that satisfy all the query constraints.
722 SOSRepair’s configuration includes a random seed that con-
723 trols this randomness, making executions deterministic.
724 However, there remain two sources of nondeterminism that
725 SOSRepair cannot control. First, SOSRepair sets a time limit
726 on KLEE’s execution on each code snippet (recall Section
727 3.1). Due to CPU load and other factors, in each invocation,
728 KLEE may be able to execute the code a different number of
729 times in the time limit, and thus generate different con-
730 straints. Second, if a code snippet contains uninitialized vari-
731 ables, those variables’ values depend on the memory state.
732 Because memory state may differ between executions, SOS-
733 Repair may generate different profiles on different execu-
734 tions. As a result of these two sources of nondeterminism,
735 SOSRepair’s resultsmay vary between executions. However,
736 in our experiments, we did not observe this nondeterminism
737 affect SOSRepair’s ability to find a patch, only its search
738 space and execution time.

739 4 EVALUATION

740 This section evaluates SOSRepair, answering several
741 research questions. The nature of each research question
742 informs the appropriate dataset used in its answering, as
743 we describe in the context of our experimental methodology
744 (Section 4.1). We begin by using IntroClass [48], a large
745 dataset of small, well-tested programs, to conduct con-
746 trolled evaluations of:

747 � Comparison to prior work: How does SOSRepair
748 perform as compared to SearchRepair [38], the prior
749 semantic-based repair approach (Section 4.2)?

750� Tuning: What granularity level is best for the pur-
751poses of finding high-quality repairs (Section 4.3)?
752Next, in Section 4.4, we address our central experimental
753concern by evaluating SOSRepair on real-world defects
754taken from the ManyBugs benchmark [48], addressing:

755� Expressiveness: How expressive and applicable is
756SOSRepair in terms of the number and uniqueness
757of defects it can repair?
758� Quality: What is the quality and effectiveness of
759patches produced by SOSRepair?
760� The role of fault localization: What are the limitations
761and bottlenecks of SOSRepair’s performance?
762Section 4.5 discusses informative real-world example
763patches produced by SOSRepair.
764Finally, we isolate and evaluate two key SOSRepair
765features:

766� Performance improvements: How much perfor-
767mance improvements does SOSRepair’s novel query
768encoding approach afford (Section 4.6)?
769� Profile refinement: How much is the search space
770reduced by the negative profile refinement approach
771(Section 4.7)?
772Finally, we discuss threats to the validity of our experi-
773ments and SOSRepair’s limitations in Section 4.8.

7744.1 Methodology

775We use two datasets to answer the research questions out-
776lined above. SOSRepair aims to scale semantic search repair
777to defects in large, real-world programs. However, such
778programs are not suitable for most controlled large-scaled
779evaluations, necessary for, e.g., feature tuning. Additionally,
780real-world programs preclude a comparison to previous
781work that does not scale to handle them. For such questions,
782we consider the IntroClass benchmark [48] (Section 4.1.1).
783However, where possible, and particularly in our core
784experiments, we evaluate SOSRepair on defects from large,
785real-world programs taken from the ManyBugs [48] bench-
786mark (Section 4.1.2).
787We run all experiments on a server running Ubuntu
78816.04 LTS, consisting of 16 Intel(R) Xeon(R) 2.30 GHz CPU
789E5-2699 v3s processors and 64 GB RAM.

7904.1.1 Small, Well-Tested Programs

791The IntroClass benchmark [48] consists of 998 small defective
792C programs (maximum 25 lines of code) with multiple test
793suites, intended for evaluating automatic program repair
794tools. Because the programs are small, it is computationally
795feasible to run SOSRepair on all defects multiple times, for
796experiments that require several rounds of execution on the
797whole benchmark. Since our main focus is applicability to
798real-world defects, we use the IntroClass benchmark for tun-
799ing experiments, and to comparewith prior work that cannot
800scale to real-world defects.
801Defects. The IntroClass benchmark consists of 998 defects
802from solutions submitted by undergraduate students to six
803small C programming assignments in an introductory C
804programming course. Each problem class (assignment) is
805associated with two independent test suites: One that is
806written by the instructor of the course (the black-box test

8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package

807 suite), and one that is automatically generated by KLEE [12],
808 a symbolic execution tool that automatically generates tests
809 (the white-box test suite). Fig. 6 shows the number of defects
810 in each program assignment group that fail at least one test
811 case from the black-box test suite. The total number of such
812 defects is 778.
813 Patch Quality. For all repair experiments on IntroClass,
814 we provide the black-box tests to the repair technique to
815 guide the search for a patch. We then use the white-box test
816 suite to measure patch quality, in terms of the percent of
817 held-out tests the patched program passes (higher is better).

818 4.1.2 Large, Real-World Programs

819 The ManyBugs [48] benchmark consists of 185 defects taken
820 from nine large, open-source C projects, commonly used to
821 evaluate automatic program repair tools (e.g., [58], [64],
822 [75], [107]).
823 Defects. The first four columns of Fig. 4 show the project,
824 size of source code, number of developer-written tests, and
825 the number of defective versions of the ManyBugs programs
826 we use to evaluate SOSRepair. Prior work [68] argues for
827 explicitly defining defect classes(the types of defects that can
828 be fixed by a given repair method) while evaluating repair
829 tools, to allow for fair comparison of tools on comparable
830 classes. For instance, Angelix [64] cannot fix the defects that
831 require adding a new statement or variable, and therefore all
832 defects that require such modification are excluded from its
833 defect class. For SOSRepair, we define a more general defect
834 class that includes all the defects that can be fixed by editing
835 one ormore consecutive lines of code in one location, and are
836 supported by BugZoo (version 2.1.29) [95]. As mentioned in

837Section 3.2, we use Docker containers managed by BugZoo
838to run experiments in a reproducible fashion. BugZoo sup-
839ports ManyBugs scenarios that can be configured on a mod-
840ern, 64-bit Linux system; we therefore exclude 18 defects
841from valgrind and fbc, which require the 32-bit Fedora 13
842virtual machine image originally released with ManyBugs.
843Further, automatically fixing defects that require editing
844multiple files or multiple locations within a file is beyond
845SOSRepair’s current capabilities. We therefore limit the
846scope of SOSRepair’s applicability only to the defects that
847require developers to edit one or more consecutive lines of
848code in a single location. In theory, SOSRepair can be used to
849find multi-location patches, but considering multiple loca-
850tions increases the search space and is beyond the scope of
851this paper.
852SOSRepair’s defect class includes 65 of the 185 Many-
853Bugs defects. We use method-level fault localization by lim-
854iting SOSRepair’s fault localization to the method edited
855by the developer’s patch, which is sometimes hundreds of
856lines long. We construct a single snippet database (recall
857Section 3) per project from the oldest version of the buggy
858code among all the considered defects. Therefore, the snippet
859database contains none of the developer-written patches.
860Fig. 5 shows, for each ManyBugs program, the mean and
861median snippet size, the number of variables in code snip-
862pets, the number of functions called within the snippets, the
863number of constraints for the code snippets stored in the
864database, and the time spent on building the database. For
865each program, SOSRepair generates thousands of snippets,
866and for each snippet, on average, KLEE generates tens of
867SMT constraints. SOSRepair generated a total of 145,639 snip-
868pets, with means of 140 characters, 4 variables, 1 function
869call, and 13 SMT constraints. The database generation is
870SOSRepair’s most time-consuming step, which only needs to
871happen once per project. The actual time to generate the
872database varies based on the size of the project. It takes from
8732.3 hours for gzip up to 115 hours for wireshark, which is
874the largest program in the ManyBugs benchmark. On aver-
875age, it takes 8.2 seconds to generate each snippet. However,
876we collected these numbers using a single thread. This step
877is easily parallelizable, representing a significant perfor-
878mance opportunity in generating the database. We set the
879snippet granularity to 3–7 lines of code, following the results
880of our granularity experiments (Section 4.3) and previous
881work on code redundancy [25].

Fig. 4. Subject programs and defects in our study, and the number of
each for which SOSRepair generates a patch.

Fig. 5. The code snippet database SOSRepair generates for each of the ManyBugs programs. SOSRepair generated a total of 145,639 snippets,
with means of 140 characters, 4 variables, 1 function call, and 13 SMT constraints. On average, SOSRepair builds the database in 35 hours, using a
single thread.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 9

882 Patch Quality.Akey concern in automated program repair
883 research is the quality of the produced repairs [76], [85]. One
884 mechanism for objectively evaluating patch quality is via
885 independent test suites, held out from patch generation. The
886 defects in ManyBugs are released with developer-produced
887 test suites of varying quality, often with low coverage of
888 modified methods. Therefore, we construct additional held-
889 out test suites to evaluate the quality of generated patches.
890 For a given defect, we automatically generate unit tests for
891 all methods modified by either the project’s developer or by
892 at least one of the automated repair techniques in our evalua-
893 tion. We do this by constructing small driver programs that
894 invoke themodifiedmethods:

895 � Methods implemented as part of an extension or mod-
896 ule can be directly invoked from a driver’s main

897 function (e.g., the substr_comparemethod of php
898 stringmodule.)
899 � Methods implemented within internal libraries are
900 invoked indirectly by using other functionality. For
901 example, the method do_inheritance_check_

902 on_methodof zend_compile library in php is
903 invoked by creating and executing phpprograms
904 that implement inheritance. For such methods, the
905 driver’s mainfunction sets the values of requisite
906 global variables and then calls the functionality that
907 invokes the desired method.
908 We automatically generate random test inputs for the
909 driver programs that then invoke modified methods. We
910 generate inputs until either the tests fully cover the target
911 method or until adding new test inputs no longer signifi-
912 cantly increases statement coverage. For four php and two
913 lighttpd scenarios for which randomly generated test
914 inputs were unable to achieve high coverage, we manually
915 added new tests to that effect. For libtiffmethods requir-
916 ing tiff images as input, we use 7,214 tiff images randomly
917 generated and released by the AFL fuzz tester [2].We use the
918 developer-patched behavior to construct test oracles, record-
919 ing logged, printed, and returned values and exit codes as
920 ground truth behavior. If the developer-patched program
921 crashes on an input, we treat the crash as the expected
922 behavior.
923 We release these generated test suites (alongwith all source
924 code, data, and experimental results) to support future
925 evaluations of automated repair quality on ManyBugs. All

926materials may be downloaded from https://github.

927com/squaresLab/SOSRepair-Replication-Package.
928This release is the first set of independently-generated quality-
929evaluation test suites forManyBugs.
930Baseline Approaches. We compare to three previous repair
931techniques that have been evaluated on (subsets) of Many-
932Bugs, relying on their public data releases. Angelix [64]
933is a state-of-the-art semantic program repair approach;
934Prophet [58] is a more recent heuristic technique that instan-
935tiates templated repairs [56], informed by machine learning;
936and GenProg [49] uses genetic programming to combine
937statement-level program changes in a repair search. GenProg
938has been evaluated on all 185ManyBugs defects; Angelix, on
93982 of the 185 defects; Prophet, on 105 of 185. Of the 65 defects
940that satisfy SOSRepair’s defect class, GenProg is evaluated
941on all 65 defects, Angelix on 30 defects, and Prophet on 39
942defects.

9434.2 Comparison to SearchRepair

944First, to substantiate SOSRepair’s improvement over previ-
945ous work in semantic search-based repair, we empirically
946compare SOSRepair’s performance to SearchRepair [38].
947Because SearchRepair does not scale to the ManyBugs pro-
948grams, we conduct this experiment on the IntroClass data-
949set (Section 4.1.1). We use the black-box tests to guide the
950search for repair, and the white-box tests to evaluate the
951quality of the produced repair.
952Fig. 6 shows the number of defects patched by each tech-
953nique. SOSRepair patches more than twice as many defects
954as SearchRepair (346 versus 150, out of the 778 total repairs
955attempted). This difference is statistically significant based
956on Fisher’s exact test (p < 10�15). The bottom row shows the
957mean percent of the associated held-out test suite passed by
958each patched program. Note that SOSRepair’s average patch
959quality is slightly lower than SearchRepair’s (91.5 versus
96097.3%). However, 239 of the 346 total SOSRepair patches
961pass 100% of the held-out tests, constituting substantially
962more very high-quality patches than SearchRepair finds total
963(150). Overall, however, semantic search-based patch quality
964is quite high, especially as compared to patches produced by
965prior techniques as evaluated in the prior work: AE [107]
966finds patches for 159 defects with average quality of 64.2%,
967TrpAutoRepair [75] finds 247 patches with 72.1% quality,
968and GenProg [108] finds 287 patches with average quality of
96968.7% [38]. Overall, SOSRepair outperforms these prior tech-
970niques in expressive power (number of defects repaired, at
971346 of 778), and those patches are of measurably higher
972quality.

9734.3 Snippet Granularity

974Snippet granularity informs the size and preparation of the
975candidate snippet database, as well as SOSRepair’s expres-
976siveness. Low granularity snippets may produce prohibi-
977tively large databases and influence patch quality. High
978granularity (i.e., larger) snippets lower the available redun-
979dancy (previous work suggests that the highest code redun-
980dancy is found in snippets of 1–7 lines of code [25]) and
981may reduce the probability of finding fixes. Both for tuning
982purposes and to assess one of our underlying hypotheses,
983we evaluate the effect of granularity on repair success and

Fig. 6. Number of defects repaired by SearchRepair and SOSRepair on
IntroClass dataset. “Mean quality” denotes the mean percent of the asso-
ciated held-out test suite passed by each patched programs.

10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package

984 patch quality by systematically altering the granularity level
985 of both the code snippets in the SOSRepair database and the
986 buggy snippet to be repaired. Because this requires a large
987 number of runs on many defects to support statistically sig-
988 nificant results, and to reduce the confounds introduced by
989 real-world programs, we conduct this experiment on the
990 IntroClass dataset, and use SOSRepair to try to repair all
991 defects in the dataset using granularity level configuration
992 of 1–3 lines, 3–7 lines, and 6–9 lines of code.
993 Fig. 7 shows the number of produced patches, the num-
994 ber of those patches that pass all the held-out tests, and the
995 mean percent of held-out test cases that the patches pass, by
996 granularity of the snippets in the SOSRepair database. The
997 granularity of 3–7 lines of code produces the most patches
998 (346 versus 188 and 211 with other granularities), and the
999 most patches that pass all the held-out tests (239 versus 120

1000 and 125 with other granularities). Fisher’s exact test con-
1001 firms that these differences are statistically significant (all
1002 p < 10�70).
1003 While the number of patches that pass all defects is sig-
1004 nificantly higher for the 3–7 granularity, and the fraction of
1005 patches that pass all held-out tests is higher for that granu-
1006 larity (69.1% for 3–7, 63.8% for 1–3, and
1007 59.2% for 6–9), the mean patch quality is similar for all the
1008 three levels of granularity. We hypothesize that this obser-
1009 vation may be a side-effect of the small size of the programs
1010 in the IntroClass benchmark and the high redundancy
1011 induced by many defective programs in that benchmark
1012 attempting to satisfy the same specification. We suspect this
1013 observation will not extend to benchmarks with more diver-
1014 sity and program complexity, and thus make no claims
1015 about the effect of granularity on average quality.
1016 We configure our database in subsequent experiments to
1017 use snippets of 3–7 lines, as these results suggest that doing
1018 so may provide a benefit in terms of expressive power. The
1019 results of this study may not immediately extend to large,
1020 real-world programs; we leave further studies exploring
1021 repair granularity for large programs to future work.

1022 4.4 Repair of Large, Real-World Programs

1023 A key contribution of our work is a technique for semantic
1024 search-based repair that scales to real-world programs; we
1025 therefore evaluate SOSRepair on defects from ManyBugs
1026 that fall into its defect class (as described in Section 4.1.2). The
1027 “patched” column in Fig. 4 summarizes SOSRepair’s ability
1028 to generate patches. Fig. 8 presents repair effectiveness and

1029quality for all considered defects in the class, comparing
1030them with patches produced by previous evaluations of
1031Angelix, Prophet, andGenProg. Fig. 8 enumerates defects for
1032readability andmaps each “program ID” to a revision pair of
1033the defect and developer-written repair.

10344.4.1 Repair Expressiveness and Applicability

1035SOSRepair patches 22 of the 65 defects that involved modi-
1036fying consecutive lines by the developer to fix those defects.
1037The Angelix, Prophet, and GenProg columns in Fig. 8 indi-
1038cate which approaches succeed on patching those defects
1039(• for not patched, and NA for not attempted, correspond-
1040ing to defects outside the defined defect class for a tech-
1041nique). There are 5 defects that all four techniques patch.
1042SOSRepair is the only technique that repaired libtiff-4.
1043SOSRepair produces patches for 3 defects that Angelix can-
1044not patch, 5 defects that Prophet cannot patch, and 6 defects
1045that GenProg cannot patch. These observations corroborate
1046results from prior work on small programs, which showed
1047that semantic search-based repair could target and repair
1048defects that other techniques cannot [38].
1049Even though efficiency is not a focus of SOSRepair’s
1050design, we measured the amount of time required to gener-
1051ate a patch with SOSRepair. On average, it took SOSRepair
10525.25 hours to generate patches reported in Fig. 8. Efficiency
1053is separate from, and secondary to the ability to produce
1054patches and can be improved by taking advantage of paral-
1055lelism and multithreading in SOSRepair’s implementation.
1056On average, 57.6% of the snippets in the database (satisfying
1057type constraints) matched the SMT query described in Sec-
1058tion 2.4. Of the repaired defects, seven involve insertion,
1059seven involve replacement, and eight involve deletion.

10604.4.2 Repair Effectiveness and Quality

1061Fig. 8 shows the percent of evaluation tests passed by
1062the SOSRepair, Angelix, Prophet, and GenProg patches.
1063“Coverage” is the average statement-level coverage of the
1064generated tests on the methods modified by either the devel-
1065oper or by at least one automated repair technique in our
1066evaluation. SOSRepair produces more patches (9, 41%) that
1067pass all independent tests than Angelix (4), Prophet (5) and,
1068GenProg (4). For the defects patched in-common by SOSRe-
1069pair and other techniques, Angelix and SOSRepair patch 9 of
1070the same defects; both SOSRepair and Angelix produce 4
1071patches that pass all evaluation tests on this set. Prophet and

Fig. 7. A comparison of applying SOSRepair to IntroClass defects with three different levels of granularity: 1–3, 3–7, and 6–9 lines of code.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 11

Fig. 8. SOSRepair patches 22 of the 65 considered defects, 9 (41%) of which pass all of the independent tests.When SOSRepair is manually provided
a fault location (SOSRepair�), it patches 23 defects, 16 (70%) of which pass all of the independent tests. All defects repaired by either SOSRepair or
SOSRepair� (shaded in gray) have a generated test suite for patch quality assessment. Coverage is the mean statement-level coverage of that test
suite on the patch-modified methods. indicates that a technique produced a patch, indicates that a technique did not produce a patch, and
NA indicates that the defect was not attempted by a technique (for Angelix, this defect was outside its defect class; for Prophet this defect was not
available because Prophet was evaluated on an older version of ManyBugs). Three of the released Angelix patches [64] (denoted z) do not
automatically apply to the buggy code. Each SOSRepair and SOSRepair� patch is either a replacement (!), an insertion (), or a deletion ().

12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

1072 SOSRepair patch 11 of the same defects; both SOSRepair and
1073 Prophet produce 5 patches that pass all evaluation tests on
1074 this set. GenProg and SOSRepair patch 16 of the same
1075 defects; 4 out of these 16 GenProg patches and 8 SOSRepair
1076 patches pass all evaluation tests. Thus, SOSRepair produces
1077 more patches that pass all independent tests than GenProg,
1078 and as many such patches as Angelix and Prophet. This sug-
1079 gests that semantic code search is a promising approach to
1080 generate high-quality repairs for real defects, and that it has
1081 potential to repair defects that are outside the scope of other,
1082 complementary repair techniques.

1083 4.4.3 Improving Patch Quality through

1084 Fault Localization

1085 Although these baseline results are promising, most of the
1086 patches previous semantic search-based repair produced on
1087 small program defects passed all held-out tests [38]. We
1088 investigated why SOSRepair patch quality is lower than this
1089 high bar. We hypothesized that two possible reasons are that
1090 real-world buggy programs do not contain code that can
1091 express the needed patch, or that fault localization impreci-
1092 sion hampers SOSRepair success. Encouragingly, anec-
1093 dotally, we found that many buggy programs do contain
1094 code that can express the developer patch. However, fault
1095 localization is the more likely culprit. For example, for gmp-
1096 1, fault localization reports 59 lines as equally-highly suspi-
1097 cious, including the line modified by the developer, but as
1098 part of its breadth-first strategy, SOSRepair only tries 10 of
1099 these 59.
1100 We further observed that in some cases, more than one
1101 mapping between variables satisfies the query, but only one
1102 results in a successful patch. Since trying all possible map-
1103 pings is not scalable, SOSRepair only tries the first mapping
1104 selected by the solver. Including more variables in the map-
1105 ping query increases the number of patch possibilities, but
1106 also the complexity of the query.
1107 We created SOSRepair�, a semi-automated version of
1108 SOSRepair that can take hints from the developer regarding
1109 fault location and variables of interest. SOSRepair� differs
1110 from SOSRepair in the following two ways:

1111 1) SOSRepair uses spectrum-based fault localization [37]
1112 to identify candidate buggy code regions. SOSRepair�

1113 uses a manually-specified candidate buggy code
1114 region. In our experiments, SOSRepair� uses the loca-
1115 tion of the code the developer modified to patch the
1116 defect as its candidate buggy code region, simulating
1117 the developer suggesting where the repair technique
1118 should try to repair a defect.
1119 2) SOSRepair considers all live variables after the inser-
1120 tion line in its query. While multiple mappings may
1121 exist that satisfy the constraints, not all such map-
1122 pings may pass all the tests. SOSRepair uses the one
1123 mapping the SMT solver returns. SOSRepair� can be
1124 told which variables not to consider, simulating the
1125 developer suggesting to the repair technique which
1126 variables likelymatter for a particular defect. A smaller
1127 set of variables of interest increases the chance that the
1128 mapping the SMT solver returns and SOSRepair� tries
1129 is a correct one. We found that for 6 defects (gzip-1,
1130 libtiff-4, libtiff-8, php-10, php-12, and

1131gmp-1), SOSRepair failed to produce a patch because
1132it attempted an incorrectmapping. For these 6 defects,
1133we instructed SOSRepair� to reduce the variables of
1134interest to just those variables used in the developer-
1135written patch.
1136On our benchmark, SOSRepair� patches 23 defects and 16
1137(70%) of them pass all independent tests. While it is unsound
1138to compare SOSRepair� to prior, fully-automated techni-
1139ques, our conclusions are drawn only from the comparison
1140to SOSRepair; the quality results for the SOSRepair�-patched
1141defects for the prior tools in Fig. 8 are only for reference.
1142Our experiments show that precise fault localization
1143allows SOSRepair� to patch 7 additional defects SOSRepair
1144could not (bottom of Fig. 8), and to improve the quality of 3
1145of SOSRepair’s patches. Overall, 9 new patches pass 100%
1146of the independent tests.
1147SOSRepair and SOSRepair� sometimes attempt to patch
1148defects at different locations: SOSRepair using spectrum-
1149based fault localization and SOSRepair� at the location
1150where the developer patched the defect. For 6 defects, SOS-
1151Repair finds a patch, but SOSRepair� does not. Note that
1152defects can often be patched at multiple locations, and devel-
1153opers do not always agree on a single location to patch a par-
1154ticular defect [10]. Thus, the localization hint SOSRepair�

1155receives is a heuristic, and may be neither unique nor opti-
1156mal. In each of these 6 cases, the patch SOSRepair finds it at
1157an alternate location than where the developer patched the
1158defect.
1159Because SOSRepair and SOSRepair� sometimes patch at
1160different locations, the patches they produce sometimes dif-
1161fer, and accordingly, so does the quality of those patches. In
1162our experiments, in all but one case (php-5) SOSRepair�

1163patches were at least as high, or higher quality than SOSRe-
1164pair patches for the same defect.
1165We conclude that research advancements that produce
1166more accurate fault localization or elicit guidance from
1167developers in a lightweightmanner are likely to dramatically
1168improve SOSRepair performance. Additionally, input (or
1169heuristics) on which variables are likely related to the buggy
1170functionality (and are thus appropriate to consider) could
1171limit the search to a smaller but more expressive domain,
1172further improving SOSRepair.

11734.5 Example Patches

1174In this section, we present several SOSRepair patches pro-
1175duced on the ManyBugs defects (Section 4.4), comparing
1176them to developer patches and those produced by other
1177tools. Our goal is not to be comprehensive, but rather to
1178present patches highlighting various design decisions.

1179Example 1 python-1. The python interpreter at revision
1180#69223 fails a test case concerning a variable that should
1181never be negative. The developer patch is as follows:

1182}

1183+ if (timeout < 0) {

1184+ PyErr_SetString(PyExc_ValueError,

1185+ “timeout must be non-negative“);

1186+ return NULL;

1187+ }

1188seconds = (long)timeout;

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 13

1189 Fault localization correctly identifies the developer’s inser-
1190 tion point for repair. Several snippets in the python project
1191 perform similar functionality to the fix, including the follow-
1192 ing, from the IOmodule:

1193 if (n < 0) {

1194 PyErr_SetString(PyExc_ValueError,

1195 “invalid key number“);

1196 return NULL;

1197 }

1198 SOSRepair correctly maps variable n to timeout and
1199 inserts the code to repair the defect. Although the error mes-
1200 sage is not identical, the functionality is, and suitable to sat-
1201 isfy the developer tests. However, unlike the developer
1202 tests, the generated tests do consider the error message,
1203 explaining the patch’s relatively low success on the held-
1204 out tests. Synthesizing good error messages is an open prob-
1205 lem; such a semantically meaningful patch could still assist
1206 developers in more quickly addressing the underlying
1207 defect [106].
1208 GenProg did not patch this defect; Angelix was not
1209 attempted on it, as the defect is outside its defect class. The
1210 Prophet patch modifies an if-check elsewhere in the code to
1211 include a tautological condition:

1212 - if ((!rv)) {

1213 + if((!rv) && !(1)) {

1214 if (set_add_entry((PySetObject *)...

1215 This demonstrates how techniques that do not delete
1216 directly can still do so, motivating our explicit inclusion of
1217 deletion.

1218 Example 2 php-2. We demonstrate the utility of explicit
1219 deletion with our second example, from php-2 (recall
1220 Fig. 8). At the buggy revision, php fails two test cases
1221 because of an incorrect value modification in its string

1222 module. Both the developer and SOSRepair delete the
1223 undesired functionality:

1224 - if (len > s1_len - offset) {

1225 - len = s1_len - offset;

1226 - }

1227 Angelix and Prophet correctly eliminate the same func-
1228 tionality by modifying the if condition such that it always
1229 evaluates to false. GenProg inserts a return; statement
1230 in a different method.

1231 Example 3 php-1. Finally, we show a SOSRepair patch that
1232 captures a desired semantic effectwhile syntactically differ-
1233 ent from the human repair. Revision 74343ca506 of php-1
1234 (recall Fig. 8) fails 3 test cases due to an incorrect condition
1235 around a loopbreak, which the developermodifies:

1236 - if (just_read< toread) {

1237 + if (just_read == 0) {

1238 break;

1239 }

1240 This defect inspired our illustrative example (Section 2.1).
1241 Using default settings, SOSRepair first finds a patch identical

1242to the developer fix. To illustrate, we present a different but
1243similar fix that SOSRepair finds if run beyond the first repair:

1244if ((int)box_length <= 0) {

1245break ;

1246}

1247SOSRepair maps box_length to just_read, and repla-
1248ces the buggy code. In this code, just_read is only ever
1249greater than or equal to zero, such that this patch is accept-
1250able. Angelix and Prophet were not attempted on this defect;
1251GenProg deletes other functionality.

12524.6 Query Encoding Performance

1253To answer our final two research questions, we isolate and
1254evaluate two key novel features of SOSRepair. First, this
1255section evaluates the performance improvements gained
1256by SOSRepair’s novel query encoding approach. Second,
1257Section 4.7 evaluates the effects of SOSRepair’s negative
1258profile refinement approach on reducing the search space.
1259In the repair search problem, query complexity is a func-
1260tion of the number of test inputs through a region and the
1261number of possible mappings between a buggy region and
1262the repair context. To understand the differences between
1263SOSRepair’s and the old approach’s encodings, consider a
1264buggy snippet C with two input variables a and b and a single
1265output variable c. Suppose C is executed by two tests, t1 and
1266t2. And supposeS is a candidate repair snippetwith two input
1267variables x and y, a single output variable z, and path con-
1268straints ’c generated by the symbolic execution engine.
1269SOSRepair’s encodinguses location variables to discover a valid
1270mapping between variables a; b and x; y that satisfy ’c con-
1271straints for both test cases t1 and t2, with a single query (recall
1272Section 2.4.1).Meanwhile, the prior approach [38] traverses all
1273possible mappings between variables (m1 : ða ¼ xÞ ^ ðb ¼
1274yÞ ^ ðc ¼ zÞ and m2 : ða ¼ yÞ ^ ðb ¼ xÞ ^ ðc ¼ zÞ), and creates
1275a query for every test case, for every possible variable map-
1276ping. A satisfiable query implies its mapping is valid for that
1277particular test. For example, to show that mapping m1 is a
1278valid mapping, two queries are required (one for t1 and one
1279for t2), and only if both are satisfiable ism1 considered valid.
1280The number of queries required for this approach grows
1281exponentially in the number of variables, as there is an expo-
1282nential number of mappings (permutation) of the variables.
1283In our example, there are two possible mappings and two
1284tests, so four queries are required, unlike SOSRepair’s one.
1285To evaluate the performance impact of SOSRepair’s
1286new encoding, we reimplement the previous encoding
1287approach [38]. We then compare SMT solver speed on the
1288same repair questions using each encoding. Running on two
1289randomly-selected ManyBugs defects, we measured the
1290response time of the solver on more than 10,000 queries for
1291both versions of encoding techniques. Fig. 9 shows the speed
1292up using the new encoding as compared to the old encoding,
1293as a function of query complexity (number of tests times
1294the number of variable permutations). The new encoding
1295approach delivers a significant speed up over the previous
1296approach, and the speed up increases linearly with query
1297complexity (R2 ¼ 0:982).
1298Looking at the two approaches individually, query time
1299increases linearly with query complexity (growing slowly

14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

1300 slope-wise, but with a very high R2 ¼ 0:993) with the previ-
1301 ous encoding, and is significantly more variable with the
1302 new encoding and does not appear linearly related to query
1303 complexity (R2 ¼ 0:008). Overall, Fig. 9 shows the speed up
1304 achieved with the new encoding, and its linear increase as
1305 query complexity grows.

1306 4.7 Profile Refinement Performance

1307 The profile refinement approach (recall Section 2.5) uses
1308 negative tests to iteratively improve a query, reduce the
1309 number of attempted candidate snippets, and repair defects
1310 without covering passing test cases. By default, SOSRepair
1311 uses the automated, iterative query refinement on all defects
1312 whenever at least one faulty region under consideration is
1313 covered only by negative test cases. In our experiments, for
1314 2 ManyBugs defects (libtiff-8 and lighttpd-2), the
1315 patches SOSRepair and SOSRepair� produce cover a region
1316 only covered by negative test cases, though SOSRepair and
1317 SOSRepair� use the refinement process while attempting to
1318 patch other defects as well.
1319 In this experiment, we evaluate the effect of iterative pro-
1320 file refinement using negative examples on the size of the
1321 considered SMT search space. We conduct this experiment
1322 on a subset of the IntroClass dataset to control for the effect of
1323 symbolic execution performance (which is highly variable on
1324 the real-world programs in ManyBugs). We ran SOSRepair
1325 on all the defects in the median, smallest, and grade pro-
1326 grams, only using the initially failing test cases, with profile
1327 refinement, for repair. For every buggy line selected by the
1328 fault localization and expanded into a region with granular-
1329 ity of 3–7 lines of code, wemeasured the number of candidate
1330 snippets in the database that can be rejected by the SMT-
1331 solver (meaning the patch need not be dynamically tested to
1332 be rejected, saving time) using only negative queries.
1333 Fig. 10 shows the percent of the search space excluded
1334 after multiple iterations for all buggy regions. For example,
1335 the first bar shows that on 68% of buggy regions tried, fewer
1336 than 20% of candidate snippets were eliminated by the solver
1337 when only negative tests are available, leaving more than
1338 80% of possible candidates for dynamic evaluation. We find
1339 that approach effectiveness depends on the nature of the
1340 defect and snippets. In particular, the approach performs
1341 poorly when desired snippet behavior involves console out-
1342 put that depends on a symbolic variable. This makes sense:
1343 KLEE produces random output in the face of symbolic con-
1344 sole output, and such output is uninformative in specifying

1345undesired behavior. Our results show that on 14% of the
1346defects (that are dependent on console output), more than
134740% of database snippets can be rejected using only the test
1348cases that the program initially failed. We also transformed
1349the defects in the dataset to capture console output by vari-
1350able assignments, treating those variables as the output
1351(rather than the console printout); Fig. 10 also shows the
1352results of running the same study on the modified programs.
1353More than 40% of the possible snippets can be eliminated for
135466% of the preprocessed programs. Overall, profile refine-
1355ment can importantly eliminate large amounts of the search
1356space, but its success depends on the characteristics of the
1357code under repair.

13584.8 Threats and Limitations

1359Even though SOSRepair works on defects that require devel-
1360opers to modify a single (potentially multi-line) location in
1361the source code, we ensure that it generalizes to all kinds of
1362defects belonging to large unrelated projects by evaluating
1363SOSRepair on a subset of the ManyBugs benchmark [48],
1364which consists of real-world, real-developer defects, and is
1365used extensively by prior program repair evaluations [48],
1366[58], [64], [70], [75], [107]. The defects in our evaluation also
1367cover the novel aspects of our approach, e.g., defects with
1368only negative profiles, console output, and various edit
1369types.
1370Our work inherits KLEE’s limitations: SOSRepair cannot
1371identify snippets that KLEE cannot symbolically execute,
1372impacting patch expressiveness nevertheless, the modified
1373buggy code can include KLEE-unsupported constructs,
1374such as function pointers. Note that this limitation of KLEE
1375is orthogonal to our repair approach. As KLEE improves in
1376its handling of more complex code, so will SOSRepair. Our
1377discussion of other factors influencing SOSRepair success
1378(recall Section 4.4) suggests directions for improving appli-
1379cability and quality.
1380Our experiments limit the database of code snippets to
1381those found in the same project, based on observations of
1382high within-project redundancy [4]. Anecdotally, we have
1383observed SOSRepair failing to produce a patch when using
1384snippets only from the same project, but succeeding with a
1385correct patch when using snippets from other projects. For
1386example, for gzip-1 defect, the code in gzip lacks the

Fig. 10. Fraction of defects that can reject fractions of the search space
(measured via SMT queries) using only iteratively-constructed negative
examples. Profile refinement improves scalability by reducing the number
of candidate snippets to consider. Console output that relies on symbolic
values affects this performance.

Fig. 9. The speedup of the new encoding approach over the previous
approach grows with query complexity.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 15

1387 necessary snippet to produce a patch, but that snippet
1388 appears in the python code. Extending SOSRepair to use
1389 snippets from other projects could potentially improve
1390 SOSRepair’s effectiveness, but also creates new scalability
1391 challenges, including handling code snippets that include
1392 custom-defined, project-specific types and structures.
1393 Precisely assessing patch quality is an unsolved problem.
1394 As with other repair techniques guided by tests, we use tests,
1395 a partial specification, to evaluate the quality of SOSRepair’s
1396 patches. Held-out, independently generated or written test
1397 suites represent the state-of-the-art of patch quality evalua-
1398 tion [85], along with manual inspection [58], [76]. Although
1399 developer patches (which we use as a functional oracle) may
1400 contain bugs, in the absence of a better specification, evalua-
1401 tions such as oursmust rely on the developers.
1402 We conduct several experiments (e.g., Sections 4.3 and 4.7)
1403 on small programs from the IntroClass benchmark [48], since
1404 these experiments require controlled, large-scale executions
1405 of SOSRepair. Even though these experiments provide valu-
1406 able insights, their results may not immediately extend to
1407 large, real-world programs.
1408 We publicly release our code, results, and new test suites
1409 to support future evaluation, reproduction, and extension,
1410 mitigating the risk of errors in our implementation or
1411 setup. All materials may be downloaded from https://

1412 github.com/squaresLab/SOSRepair (SOSRepair’s
1413 implementa t ion) , and https://github.com/

1414 squaresLab/SOSRepair-Replication-Package

1415 (SOSRepair’s replication package).

1416 5 RELATED WORK

1417 We place our work in the context of related research in two
1418 areas, code search and automated program repair.

1419 5.1 Code Search

1420 Execution-based semantic code search [77] executes code
1421 to find matches with queries as test cases, signature, and
1422 keywords [77]. Meanwhile constraint-satisfaction-based
1423 search [88], [89], [90] matches input-output examples to code
1424 fragments via symbolic execution. SOSRepair builds on this
1425 prior work. Synthesis can adapt code-search results to a
1426 desired context [93], [105]. The prior approaches had
1427 humans directly or indirectlywrite queries. By contrast, SOS-
1428 Repair automatically extracts search queries from program
1429 state and execution, and uses the query results to map snip-
1430 pets to a new context. Other code search work synthesizes
1431 Java directly from free-form queries [32], [86] or based on
1432 crash reports [27]. While effective at repairing Java expres-
1433 sions that use wrong syntax or are missing arguments [32],
1434 this type of repair does not target semantic errors and
1435 requires an approximate Java-like expression as part of the
1436 query (and is thus similar to synthesis by sketching [86]).

1437 5.2 Program Repair

1438 There are two general classes of approaches to repairing
1439 defects using failing tests to identify faulty behavior and
1440 passing tests to demonstrate acceptable program behavior:
1441 generate-and-validate or heuristic repair and semantic-based
1442 repair. The formeruses search-based techniques or predefined

1443templates to generate many syntactic candidate patches, vali-
1444dating them against the tests (e.g., GenProg [49], Prophet [58],
1445AE [107], HDRepair [46], ErrDoc [94], JAID [15], Qlose [19],
1446and Par [39], among others). Techniques such as DeepFix [31]
1447and ELIXIR [80] use learnedmodels to predict erroneous pro-
1448gram locations along with patches. ssFix [110] uses existing
1449code that is syntactically related to the context of a bug to pro-
1450duce patches. CapGen [109] works at the AST node level
1451(token-level) and uses context and dependency similarity
1452(instead of semantic similarity) between the suspicious code
1453fragment and the candidate code snippets to produce patches.
1454To manage the large search space of candidates created
1455because of using finer-level granularity, it extracts context
1456information from candidate code snippets and prioritizes the
1457mutation operators considering the extracted context infor-
1458mation. SimFix [36] considers the variable name and method
1459name similarity in addition to the structural similarity
1460between the suspicious code and candidate code snippets.
1461Similar to CapGen, it prioritizes the candidate modifications
1462by removing the ones that are found less frequently in exist-
1463ing patches. Hercules [81] generalizes single-location pro-
1464gram repair techniques to defects that require similar edits be
1465made in multiple locations. Enforcing that a patch keeps a
1466program semantically similar to the buggy version by ensur-
1467ing that user-specified correct traces execute properly on the
1468patched version can repair reactive programswith linear tem-
1469poral logic specifications [98]. Several repair approaches have
1470aimed to reduce syntactic or semantic differences between
1471the buggy and patched program [19], [36], [38], [45], [63], [98],
1472[109], with a goal of improving patch quality. For example,
1473Qlose [19]minimizes a combination of syntactic and semantic
1474differences between the buggy and patched programs while
1475generating candidate patches. SketchFix [34] optimizes the
1476candidate patch generation and evaluation by translating
1477faulty programs to sketches (partial programs with holes)
1478and lazily initializing the candidates of the sketcheswhile val-
1479idating them against the test execution. SOFix [50] uses 13
1480predefined repair templates to generate candidate patches.
1481These repair templates are created based on the repair pat-
1482terns mined from StackOverflow posts by comparing code
1483samples in questions and answers for fine-grained modifica-
1484tions. SapFix [60] and Getafix [83], two tools deployed on pro-
1485duction code at Facebook, efficiently produce repairs for large
1486real-world programs. SapFix [60] uses prioritized repair strat-
1487egies, including pre-defined fix templates, mutation opera-
1488tors, and bug-triggering change reverting, to produce repairs
1489in realtime. Getafix [83] learns fix patterns from past code
1490changes to suggest repairs for bugs that are found by Infer,
1491Facebook’s in-house static analysis tool.
1492SOSRepair’s approach to using existing code to inform
1493repair is reminiscent of Prophet [58], Par [39], IntPTI [16],
1494and HDRepair [46] that use models of existing code to cre-
1495ate or evaluate patches. SOSRepair does not use patterns,
1496but rather considers a database of code snippets for candi-
1497date patches, using a constraint solver and existing test
1498cases to assess them. The latter class of approaches use
1499semantic reasoning to synthesize patches to satisfy an
1500inferred specification (e.g., Nopol [112], Semfix [73], Direct-
1501Fix [63], Angelix [64], S3 [45], JFIX [44]). SemGraft [62] infers
1502specifications by symbolically analyzing a correct reference
1503implementation (as opposed to using test cases), but unlike

16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair
https://github.com/squaresLab/SOSRepair-Replication-Package
https://github.com/squaresLab/SOSRepair-Replication-Package

1504 SOSRepair, requires that reference implementation. Gene-
1505 sis [55], Refazer [79], NoFAQ [20], Sarfgen [100], and
1506 Clara [30] process correct patches to automatically infer
1507 code transformations to generate patches, a problem con-
1508 ceptually related to our challenge in integrating repair snip-
1509 pets to a new context.
1510 SearchRepair [38] combines those classes, using a con-
1511 straint solver to identify existing code to construct repairs.
1512 SOSRepair builds on SearchRepair, fundamentally improv-
1513 ing the approach in several important ways. It is signifi-
1514 cantly more expressive (handling code constructs used in
1515 real code and reasoning about snippets that can affect multi-
1516 ple variables as output) and scalable (SearchRepair could
1517 only handle small, student-written C programs), supports
1518 deletion and insertion, uses failing test cases to restrict the
1519 search space, repairs code without passing examples, and
1520 its encoding of the repair query is significantly more expres-
1521 sive and efficient.
1522 The location mechanism we adapt to repair queries
1523 was previously proposed for program synthesis [35] and
1524 adapted to semantic-based program repair [63], [64], [73].
1525 Despite underlying conceptual similarities, SOSRepair dif-
1526 fers from these approaches in key ways. Instead of replacing
1527 buggy expressions in if conditions or assignments with syn-
1528 thesized expressions, SOSRepair uses the constraint solver
1529 to identify existing code to use as patches, at a higher level of
1530 granularity than in prior work. Like SOSRepair, semantic-
1531 based approaches constrain desired behavior with failing
1532 test cases to guide patch synthesis. Critically, however, prior
1533 techniques require that the expected output on failing test
1534 cases be explicitly stated, typically through annotation. See,
1535 for example, https://github.com/mechtaev/angelix/
1536 blob/master/doc/Manual.md. SOSRepair automatically
1537 infers and uses the negative behavior extracted from the
1538 program state with no additional annotation burden.
1539 Like SOSRepair, approaches that aim to generate higher-
1540 quality patches using a test suite are complementary to
1541 attempts to generate oracles to improve the test suite. For
1542 example, Swami processes natural-language specifications to
1543 generate precise oracles and tests, improving on both devel-
1544 oper-written and other automatically-generated tests [69].
1545 Similarly, Toradacu [29] and Jdoctor [9] generate oracles from
1546 Javadoc comments, and @tComment [92] generates precondi-
1547 tions related to nullness of parameters, each ofwhich can lead
1548 to better tests. Regression test generation tools, e.g., Evo-
1549 Suite [23] and Randoop [74], can help ensure patches do not
1550 alter otherwise-undertested functionality. UnsatGuided [114]
1551 generates regression tests using EvoSuite to constrain the
1552 repair process and produce fewer low-quality patches. How-
1553 ever, automatically-generated tests often differ in quality
1554 from manually-written ones [84], [101], and have different
1555 effects on patch quality [85]. Specification mining uses execu-
1556 tion data to infer (typically) FSM-based specifications [1], [5],
1557 [6], [7], [28], [41], [42], [43], [51], [52], [53], [54], [78], [82].
1558 TAUTOKO uses such specifications to generate tests, e.g., of
1559 sequences of method invocations on a data structure [18],
1560 then iteratively improving the inferred model [18], [99]. Patch
1561 quality can also potentially improve using generated tests for
1562 non-functional properties, such as software fairness, which
1563 rely on observed behavior, e.g., by asserting that the behavior
1564 on inputs differing in a controlled way should be sufficiently

1565similar [3], [11], [26]. Meanwhile, assertions on system data
1566can also act as oracles [71], [72], and inferred causal relation-
1567ships in data management systems [24], [65], [66] can help
1568explain query results, debug errors [102], [103], [104], and
1569suggest oracles for systems that rely on data management
1570systems [67].
1571Our central goal is to improve the ability of program
1572repair to produce correct patches. Recent work has argued
1573for evaluating patch correctness using independent tests [47],
1574[85], [111], [113], which is the approach we follow, as
1575opposed to manual examination [57], [76]. Of the 22 defects
1576for which SOSRepair produces patches, 9 pass all the inde-
1577pendent tests, more than prior techniques. Improving fault
1578localization, 16 of the patches SOSRepair� produces pass
1579all independent tests. This suggests that high-granularity,
1580semantic-search-based repair can producemore high-quality
1581patches, and that better fault localization can play an impor-
1582tant role in improving repair quality.

15836 CONTRIBUTIONS

1584Automated program repair may reduce software production
1585costs and improve software quality, but only if it produces
1586high-quality patches. While semantic code search can pro-
1587duce high-quality patches [38], such an approach has never
1588been demonstrated on real-world programs. In this paper,
1589we have designed SOSRepair, a novel approach to using
1590semantic code search to repair programs, focusing on extend-
1591ing expressiveness to that of real-world C programs and
1592improving the search mechanism’s scalability. We evaluate
1593SOSRepair on 65 defects in large, real-world C programs,
1594such as php and python. SOSRepair produces patches for 22
1595(34%) of the defects, and 9 (41%) of those patches pass 100%
1596of independently-generated, held-out tests. SOSRepair
1597repairs a defect no prior techniques have, and produces
1598higher-quality patches. In a semi-automated approach that
1599manually specifies the fault’s location, SOSRepair patches 23
1600defects, of which 16 (70%) pass all independent tests. Our
1601results suggest semantic code search is a promising approach
1602for automatically repairing real-world defects.

1603ACKNOWLEDGMENTS

1604This work is supported by the National Science Foundation
1605under grants no. CCF-1453474, CCF-1563797, CCF-1564162,
1606CCF-1645136, and CCF-1763423.

1607REFERENCES

1608[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and
1609J. J. Wylie, “Fault-scalable Byzantine fault-tolerant services,” in
1610Proc. ACM Symp. Operating Syst. Principles, 2005, pp. 59–74.
1611[2] afl fuzz, “American fuzzy lop,” 2018. [Online]. Available: http://
1612lcamtuf.coredump.cx/afl/
1613[3] R. Angell, B. Johnson, Y. Brun, andA.Meliou, “Themis: Automat-
1614ically testing software for discrimination,” in Proc. Eur. Softw. Eng.
1615Conf. and ACM SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2018,
1616pp. 871–875.
1617[4] E. T. Barr, Y. Brun, P. Devanbu, M. Harman, and F. Sarro, “The
1618plastic surgery hypothesis,” in Proc. ACM SIGSOFT Symp. Found.
1619Softw. Eng., Nov. 2014, pp. 306–317.
1620[5] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D. Ernst, and
1621A. Krishnamurthy, “Using declarative specification to improve the
1622understanding, extensibility, and comparison of model-inference
1623algorithms,” IEEE Trans. Softw. Eng., vol. 41, no. 4, pp. 408–428,
1624Apr. 2015.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 17

https://github.com/mechtaev/angelix/blob/master/doc/Manual.md
https://github.com/mechtaev/angelix/blob/master/doc/Manual.md
http://lcamtuf.coredump.cx/afl/
http://lcamtuf.coredump.cx/afl/

1625 [6] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy,
1626 “Inferring models of concurrent systems from logs of their behavior
1627 with csight,” in Proc. IEEE/ACM Int. Conf. Softw. Eng., Jun. 2014,
1628 pp. 468–479.
1629 [7] I. Beschastnikh, Y. Brun, S. Schneider, M. Sloan, and M. D. Ernst,
1630 “Leveraging existing instrumentation to automatically infer
1631 invariant-constrained models,” in Proc. Eur. Softw. Eng. Conf. and
1632 ACM SIGSOFT Symp. Found. Softw. Eng., Sep. 2011, pp. 267–277.
1633 [8] S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program cor-
1634 rector for introductory programming assignments,” in Proc.
1635 ACM/IEEE Int. Conf. Softw. Eng., May 2018, pp. 60–70.
1636 [9] A. Blasi, A. Goffi, K. Kuznetsov, A. Gorla, M. D. Ernst, M. Pezz�e,
1637 and S. D. Castellanos, “Translating code comments to procedure
1638 specifications,” in Proc. Int. Symp. Softw. Testing Anal., 2018,
1639 pp. 242–253.
1640 [10] M. B€ohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe,
1641 and A. Zeller, “Where is the bug and how is it fixed? An experi-
1642 ment with practitioners,” in Proc. Eur. Softw. Eng. Conf. and ACM
1643 SIGSOFT Int. Symp. Found. Softw. Eng., Sep. 2017, pp. 117–128.
1644 [11] Y. Brun and A. Meliou, “Software fairness,” in Proc. Eur. Softw. Eng.
1645 Conf. and ACM SIGSOFT Int. Symp. Found. Softw. Eng., Nov. 2018,
1646 pp. 754–759.
1647 [12] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and
1648 automatic generation of high-coverage tests for complex systems
1649 programs,” in Proc. USENIX Conf. Operating Syst. Des. Implemen-
1650 tation, 2008, pp. 209–224.
1651 [13] A. Carzaniga, A. Gorla, A. Mattavelli, N. Perino, and M. Pezz�e,
1652 “Automatic recovery from runtime failures,” in Proc. ACM/IEEE
1653 Int. Conf. Softw. Eng., 2013, pp. 782–791.
1654 [14] A. Carzaniga, A. Gorla, N. Perino, and M. Pezz�e, “Automatic
1655 workarounds for web applications,” in Proc. ACM SIGSOFT Int.
1656 Symp. Found. Softw. Eng., 2010, pp. 237–246.
1657 [15] L. Chen, Y. Pei, and C. A. Furia, “Contract-based program repair
1658 without the contracts,” in Proc. IEEE/ACM Int. Conf. Autom.
1659 Softw. Eng., 2017, pp. 637–647.
1660 [16] X. Cheng, M. Zhou, X. Song, M. Gu, and J. Sun, “IntPTI: Auto-
1661 matic integer error repair with proper-type inference,” in Proc.
1662 IEEE/ACM Int. Conf. Autom. Softw. Eng., 2017, pp. 996–1001.
1663 [17] C. Lattner, “Clang: A C language family frontend for LLVM,”
1664 2019. [Online]. Available: https://clang.llvm.org/
1665 [18] V. Dallmeier, N. Knopp, C. Mallon, S. Hack, and A. Zeller,
1666 “Generating test cases for specification mining,” in Proc. Int.
1667 Symp. Softw. Testing Anal., 2010, pp. 85–96.
1668 [19] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair
1669 with quantitative objectives,” in Proc. Int. Conf. Comput. Aided
1670 Verification, Jul. 2016, pp. 383–401.
1671 [20] L. D’Antoni, R. Singh, andM. Vaughn, “NoFAQ: Synthesizing com-
1672 mand repairs from examples,” in Proc. Eur. Softw. Eng. Conf. and
1673 ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 582–592.
1674 [21] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,”
1675 in Proc. Int. Conf. Tools Algorithms Construction Anal. Syst., 2008,
1676 pp. 337–340.
1677 [22] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
1678 deviant behavior: A general approach to inferring errors in systems
1679 code,” ACM SIGOPS Operating Syst. Rev., vol. 35, no. 5, pp. 57–72,
1680 2001.
1681 [23] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE
1682 Trans. Softw. Eng., vol. 39, no. 2, pp. 276–291, Feb. 2013.
1683 [24] C. Freire, W. Gatterbauer, N. Immerman, and A. Meliou, “A
1684 characterization of the complexity of resilience and responsibility
1685 for self-join-free conjunctive queries,” Proc. VLDB Endowment,
1686 vol. 9, no. 3, pp. 180–191, 2015.
1687 [25] M. Gabel and Z. Su, “A study of the uniqueness of source code,”
1688 in Proc. SIGSOFT Int. Symp. Found. Softw. Eng., 2010, pp. 147–156.
1689 [26] S. Galhotra, Y. Brun, and A. Meliou, “Fairness testing: Testing
1690 software for discrimination,” in Proc. Eur. Softw. Eng. Conf. and
1691 ACMSIGSOFT Int. Symp. Found. Softw. Eng., Sep. 2017, pp. 498–510.
1692 [27] Q. Gao, H. Zhang, J. Wang, Y. Xiong, L. Zhang, and H. Mei, “Fixing
1693 recurring crash bugs via analyzing Q&A sites,” in Proc. 30th IEEE/
1694 ACM Int. Conf. Autom. Softw. Eng., Nov. 2015, pp. 307–318.
1695 [28] C. Ghezzi, M. Pezz�e, M. Sama, and G. Tamburrelli, “Mining
1696 behavior models from user-intensive web applications,” in Proc.
1697 ACM/IEEE Int. Conf. Softw. Eng., 2014, pp. 277–287.
1698 [29] A. Goffi, A. Gorla, M. D. Ernst, and M. Pezz�e, “Automatic gener-
1699 ation of oracles for exceptional behaviors,” in Proc. Int. Symp.
1700 Softw. Testing Anal., Jul. 2016, pp. 213–224.

1701[30] S. Gulwani, I. Radi�cek, and F. Zuleger, “Automated clustering
1702and program repair for introductory programming assign-
1703ments,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des. Imple-
1704mentation, 2018, pp. 465–480.
1705[31] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “DeepFix: Fixing
1706common C language errors by deep learning,” in Proc. Conf. Artif.
1707Intell., 2017, pp. 1345–1351.
1708[32] T. Gvero and V. Kuncak, “Synthesizing Java expressions from
1709free-form queries,” in Proc. ACM Int. Conf. Object Oriented Pro-
1710gram. Syst. Lang. Appl., 2015, pp. 416–432.
1711[33] A. Hindle, E. T. Barr, Z. Su, M. Gabel, and P. Devanbu, “On the
1712naturalness of software,” in Proc. ACM/IEEE Int. Conf. Softw.
1713Eng., 2012, pp. 837–847.
1714[34] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical
1715program repair with on-demand candidate generation,” in Proc.
1716ACM/IEEE Int. Conf. Softw. Eng., 2018, pp. 12–23.
1717[35] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari, “Oracle-guided
1718component-based program synthesis,” in Proc. ACM/IEEE Int.
1719Conf. Softw. Eng., 2010, pp. 215–224.
1720[36] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping pro-
1721gram repair space with existing patches and similar code,” in
1722Proc. Int. Symp. Softw. Testing Anal., 2018, pp. 298–309.
1723[37] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
1724information to assist fault localization,” in Proc. Int. Conf. Softw.
1725Eng., 2002, pp. 467–477.
1726[38] Y. Ke, K. T. Stolee, C. Le Goues, and Y. Brun, “Repairing pro-
1727grams with semantic code search,” in Proc. IEEE/ACM Int. Conf.
1728Autom. Softw. Eng., Nov. 2015, pp. 295–306.
1729[39] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch genera-
1730tion learned from human-written patches,” in Proc. ACM/IEEE
1731Int. Conf. Softw. Eng., 2013, pp. 802–811.
1732[40] J. C. King, “Symbolic execution and program testing,” Commun.
1733ACM, vol. 19, no. 7, pp. 385–394, Jul. 1976.
1734[41] I. Krka, Y. Brun, G. Edwards, and N. Medvidovic, “Synthesizing
1735partial component-level behavior models from system specifica-
1736tions,” in Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT Symp.
1737Found. Softw. Eng., Aug. 2009, pp. 305–314.
1738[42] T.-D. B. Le, X. B. D. Le, D. Lo, and I. Beschastnikh, “Synergizing
1739specification miners through model fissions and fusions,” in
1740Proc. 30th IEEE/ACM Int. Conf. Autom. Softw. Eng., Nov. 2015,
1741pp. 115–125.
1742[43] T.-D. B. Le and D. Lo, “Beyond support and confidence: Explor-
1743ing interestingness measures for rule-based specification min-
1744ing,” in Proc. Int. Conf. Softw. Anal., Evolution, Reengineering, 2015,
1745pp. 331–340.
1746[44] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “JFIX:
1747Semantics-based repair of Java programs via symbolic PathFinder,”
1748in Proc. ACM Int. Symp. Softw. Testing Anal., 2017, pp. 376–379.
1749[45] X.-B. D. Le, D.-H. Chu, D. Lo, C. Le Goues, and W. Visser, “S3:
1750Syntax- and semantic-guided repair synthesis via programming
1751by examples,” in Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT
1752Int. Symp. Found. Softw. Eng., 2017, pp. 593–604.
1753[46] X.-B. D. Le, D. Lo, and C. Le Goues, “History driven program
1754repair,” in Proc. Int. Conf. Softw. Anal., Evolution, Reengineering,
1755Mar. 2016, vol. 1, pp. 213–224.
1756[47] X.-B. D. Le, F. Thung, D. Lo, and C. L. Goues, “Overfitting in
1757semantics-based automated program repair,” in Proc. ACM/IEEE
1758Int. Conf. Softw. Eng., 2018, pp. 163–163.
1759[48] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
1760S. Forrest, and W. Weimer, “The ManyBugs and IntroClass
1761benchmarks for automated repair of C programs,” IEEE Trans.
1762Softw. Eng., vol. 41, no. 12, pp. 1236–1256, Dec. 2015.
1763[49] C. Le Goues, T. Nguyen, S. Forrest, andW. Weimer, “GenProg: A
1764generic method for automatic software repair,” IEEE Trans.
1765Softw. Eng., vol. 38, no. 1, pp. 54–72, Jan./Feb. 2012.
1766[50] X. Liu and H. Zhong, “Mining StackOverflow for program
1767repair,” in Proc. Int. Conf. Softw. Anal., Evolution, Reengineering,
17682018, pp. 118–129.
1769[51] D. Lo and S.-C. Khoo, “QUARK: Empirical assessment of autom-
1770aton-based specification miners,” in Proc. Work. Conf. Reverse
1771Eng., 2006, pp. 51–60.
1772[52] D. Lo and S.-C. Khoo, “SMArTIC: Towards building an accurate,
1773robust and scalable specification miner,” in Proc. ACM SIGSOFT
1774Int. Symp. Found. Softw. Eng., 2006, pp. 265–275.
1775[53] D. Lo and S. Maoz, “Scenario-based and value-based specification
1776mining: Better together,” inProc. IEEE/ACMInt. Conf. Autom. Softw.
1777Eng., 2010, pp. 387–396.

18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

https://clang.llvm.org/

1778 [54] D. Lo, L. Mariani, and M. Pezz�e, “Automatic steering of behav-
1779 ioral model inference,” in Proc. Eur. Softw. Eng. Conf. and ACM
1780 SIGSOFT Int. Symp. Found. Softw. Eng., 2009, pp. 345–354.
1781 [55] F. Long, P. Amidon, and M. Rinard, “Automatic inference of code
1782 transforms for patch generation,” in Proc. Eur. Softw. Eng. Conf. and
1783 ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 727–739.
1784 [56] F. Long and M. Rinard, “Staged program repair with condition
1785 synthesis,” in Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT Int.
1786 Symp. Found. Softw. Eng., 2015, pp. 166–178.
1787 [57] F. Long andM. Rinard, “An analysis of the search spaces for gen-
1788 erate and validate patch generation systems,” in Proc. ACM/IEEE
1789 Int. Conf. Softw. Eng., 2016, pp. 702–713.
1790 [58] F. Long and M. Rinard, “Automatic patch generation by learning
1791 correct code,” in Proc. ACM SIGPLAN-SIGACT Symp. Principles
1792 Program. Lang., 2016, pp. 298–312.
1793 [59] C. Macho, S. McIntosh, and M. Pinzger, “Automatically repair-
1794 ing dependency-related build breakage,” in Proc. Int. Conf. Softw.
1795 Anal., Evolution, Reengineering, 2018, pp. 106–117.
1796 [60] A. Marginean, J. Bader, S. Chandra, M. Harman, Y. Jia, K. Mao,
1797 A. Mols, and A. Scott, “SapFix: Automated end-to-end repair at
1798 scale,” in Proc. ACM/IEEE Int. Conf. Softw. Eng., May 2019,
1799 pp. 269–278.
1800 [61] M. Martinez, W. Weimer, and M. Monperrus, “Do the fix ingre-
1801 dients already exist? An empirical inquiry into the redundancy
1802 assumptions of program repair approaches,” in Proc. ACM/IEEE
1803 Int. Conf. Softw. Eng. New Ideas Emerging Results Track, 2014,
1804 pp. 492–495.
1805 [62] S. Mechtaev, M.-D. Nguyen, Y. Noller, L. Grunske, and
1806 A. Roychoudhury, “Semantic program repair using a reference
1807 implementation,” in Proc. Int. Conf. Softw. Eng., 2018, pp. 129–139.
1808 [63] S. Mechtaev, J. Yi, and A. Roychoudhury, “DirectFix: Looking for
1809 simple program repairs,” in Proc. Int. Conf. Softw. Eng., May 2015,
1810 pp. 448–458.
1811 [64] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable
1812 multiline program patch synthesis via symbolic analysis,” in
1813 Proc. IEEE/ACM 38th Int. Conf. Softw. Eng., 2016, pp. 691–701.
1814 [65] A.Meliou,W.Gatterbauer, J. Y.Halpern, C. Koch, K. F.Moore, and
1815 D. Suciu, “Causality in databases,” IEEE Data Eng. Bull., vol. 33,
1816 no. 3, pp. 59–67, Sep. 2010.
1817 [66] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu, “The
1818 complexity of causality and responsibility for query answers and
1819 non-answers,” Proc. VLDBEndowment, vol. 4, no. 1, pp. 34–45, 2010.
1820 [67] A. Meliou, S. Roy, and D. Suciu, “Causality and explanations
1821 in databases,” Proc. VLDB Endowment Tut., vol. 7, no. 13,
1822 pp. 1715–1716, 2014.
1823 [68] M. Monperrus, “A critical review of “Automatic patch genera-
1824 tion learned from human-written patches”: Essay on the problem
1825 statement and the evaluation of automatic software repair,” in
1826 Proc. ACM/IEEE Int. Conf. Softw. Eng., Jun. 2014, pp. 234–242.
1827 [69] M. Motwani and Y. Brun, “Automatically generating precise
1828 oracles from structured natural language specifications,” in Proc.
1829 IEEE/ACM Int. Conf. Softw. Eng., May 2019, pp. 188–199.
1830 [70] M. Motwani, S. Sankaranarayanan, R. Just, and Y. Brun, “Do auto-
1831 mated program repair techniques repair hard and important
1832 bugs?” Empirical Softw. Eng., vol. 23, no. 5, pp. 2901–2947, Oct. 2018.
1833 [71] K. Muşlu, Y. Brun, and A. Meliou, “Data debugging with continu-
1834 ous testing,” in Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT Int.
1835 Symp. Found. Softw. Eng. New Ideas Track, Aug. 2013, pp. 631–634.
1836 [72] K. Muşlu, Y. Brun, and A. Meliou, “Preventing data errors with
1837 continuous testing,” in Proc. ACM SIGSOFT Int. Symp. Softw.
1838 Testing Anal., Jul. 2015, pp. 373–384.
1839 [73] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra,
1840 “SemFix: Program repair via semantic analysis,” in Proc. ACM/
1841 IEEE Int. Conf. Softw. Eng., 2013, pp. 772–781.
1842 [74] C. Pacheco and M. D. Ernst, “Randoop: Feedback-directed ran-
1843 dom testing for Java,” in Proc. Conf. Object-Oriented Program. Syst.
1844 Appl., 2007, pp. 815–816.
1845 [75] Y. Qi, X. Mao, and Y. Lei, “Efficient automated program repair
1846 through fault-recorded testing prioritization,” in Proc. Int. Conf.
1847 Softw. Maintenance, Sep. 2013, pp. 180–189.
1848 [76] Z. Qi, F. Long, S. Achour, and M. Rinard, “An analysis of patch
1849 plausibility and correctness for generate-and-validate patch gen-
1850 eration systems,” in Proc. Int. Symp. Softw. Testing Anal., 2015,
1851 pp. 24–36.
1852 [77] S. P. Reiss, “Semantics-based code search,” in Proc. ACM/IEEE
1853 Int. Conf. Softw. Eng., 2009, pp. 243–253.

1854[78] S. P. Reiss and M. Renieris, “Encoding program executions,” in
1855Proc. ACM/IEEE Int. Conf. Softw. Eng., 2001, pp. 221–230.
1856[79] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi,
1857R. Suzuki, and B.Hartmann, “Learning syntactic program transfor-
1858mations from examples,” in Proc. ACM/IEEE Int. Conf. Softw. Eng.,
18592017, pp. 404–415.
1860[80] R. K. Saha, Y. Lyu, H. Yoshida, and M. R. Prasad, “ELIXIR: Effec-
1861tive object oriented program repair,” in Proc. IEEE/ACM Int.
1862Conf. Autom. Softw. Eng., 2017, pp. 648–659.
1863[81] S. Saha, R. K. Saha, and M. R. Prasad, “Harnessing evolution for
1864multi-hunk program repair,” in Proc. ACM/IEEE Int. Conf. Softw.
1865Eng., May 2019, pp. 13–24.
1866[82] M. Schur, A. Roth, and A. Zeller, “Mining behavior models from
1867enterprise web applications,” in Proc. Eur. Softw. Eng. Conf. and
1868ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2013, pp. 422–432.
1869[83] J. Bader, A. Scott, M. Pradel, and S. Chandra, “Getafix: Learning
1870to fix bugs automatically,” Proc. ACM Program. Languages,
1871Object-Oriented Programming, Systems, Languages, and Appli-
1872cations, vol. 3, Oct. 2019.
1873[84] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and
1874A. Arcuri, “Do automatically generated unit tests find real faults?
1875An empirical study of effectiveness and challenges,” in Proc. Int.
1876Conf. Autom. Softw. Eng., Nov. 2015, pp. 201–211.
1877[85] E. K. Smith, E. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
1878than the disease? Overfitting in automated program repair,” in
1879Proc. Eur. Softw. Eng. Conf. and ACM SIGSOFT Symp. Found.
1880Softw. Eng., Sep. 2015, pp. 532–543.
1881[86] A. Solar-Lezama, R. Rabbah, R. Bod�ık, and K. Ebcio�glu,
1882“Programming by sketching for bit-streaming programs,” in
1883Proc. ACM SIGPLAN Conf. Program. Lang. Des. Implementation,
18842005, pp. 281–294.
1885[87] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity
1886and value of empirical assessments of the accuracy of coverage-
1887based fault locators,” in Proc. Int. Symp. Softw. Testing Anal., 2013,
1888pp. 314–324.
1889[88] K. T. Stolee and S. Elbaum, “Toward semantic search via SMT
1890solver,” in Proc. ACM SIGSOFT Int. Symp. Found. Softw. Eng. New
1891Ideas and Emerging Results Track, 2012, pp. 25:1–25:4.
1892[89] K. T. Stolee, S. Elbaum, and D. Dobos, “Solving the search for
1893source code,” ACM Trans. Softw. Eng. Methodology, vol. 23, no. 3,
1894pp. 26:1–26:45, May 2014.
1895[90] K. T. Stolee, S. Elbaum, and M. B. Dwyer, “Code search with
1896input/output queries: Generalizing, ranking, and assessment,” J.
1897Syst. Softw., vol. 116, pp. 35–48, 2016.
1898[91] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing
1899crashes in Android apps,” in Proc. ACM/IEEE Int. Conf. Softw.
1900Eng., 2018, pp. 187–198.
1901[92] S. H. Tan, D. Marinov, L. Tan, and G. T. Leavens, “@tComment:
1902Testing Javadoc comments to detect comment-code incon-
1903sistencies,” in Proc. Int. Conf. Softw. Testing, Verification, Valida-
1904tion, 2012, pp. 260–269.
1905[93] V. Terragni, Y. Liu, and S.-C. Cheung, “CSNIPPEX: Automated
1906synthesis of compilable code snippets from Q&A sites,” in Proc.
1907ACM Int. Symp. Softw. Testing Anal., 2016, pp. 118–129.
1908[94] Y. Tian and B. Ray, “Automatically diagnosing and repairing
1909error handling bugs in C,” in Proc. Eur. Softw. Eng. Conf. and
1910ACM SIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 752–762.
1911[95] C. Timperley, S. Stepney, and C. Le Goues, “Poster: BugZoo—A
1912platform for studying software bugs,” in Proc. ACM/IEEE Int.
1913Conf. Softw. Eng., May 2018, pp. 446–447.
1914[96] Z. Tu, Z. Su, and P. Devanbu, “On the localness of software,” in
1915Proc. ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2014, pp. 269–280.
1916[97] R. van Tonder and C. L. Goues, “Static automated program
1917repair for heap properties,” in Proc. ACM/IEEE Int. Conf. Softw.
1918Eng., 2018, pp. 151–162.
1919[98] C. von Essenz and B. Jobstmann, “Program repair without
1920regret,” Formal Methods Syst. Des., vol. 47, no. 1, pp. 26–50, 2015.
1921[99] R. J. Walls, Y. Brun, M. Liberatore, and B. N. Levine, “Discovering
1922specification violations in networked software systems,” in Proc.
1923IEEE Int. Symp. Softw. Rel. Eng., Nov. 2015, pp. 496–506.
1924[100] K. Wang, R. Singh, and Z. Su, “Search, align, and repair: Data-
1925driven feedback generation for introductory programming exer-
1926cises,” in Proc. ACM SIGPLAN Conf. Program. Lang. Des. Imple-
1927mentation, 2018, pp. 481–495.
1928[101] Q.Wang, Y. Brun, andA.Orso, “Behavioral execution comparison:
1929Are tests representative of field behavior?” in Proc. IEEE Int. Conf.
1930Softw. Testing, Verification, Validation, Mar. 2017, pp. 321–332.

AFZAL ET AL.: SOSREPAIR: EXPRESSIVE SEMANTIC SEARCH FOR REAL-WORLD PROGRAM REPAIR 19

1931 [102] X. Wang, X. L. Dong, and A. Meliou, “Data X-Ray: A diagnostic
1932 tool for data errors,” in Proc. ACM SIGMOD Int. Conf. Manage.
1933 Data, 2015, pp. 1231–1245.
1934 [103] X. Wang, A. Meliou, and E. Wu, “QFix: Demonstrating error
1935 diagnosis in query histories,” in Proc. Int. Conf. Manage. Data,
1936 2016, pp. 2177–2180.
1937 [104] X. Wang, A. Meliou, and E. Wu, “QFix: Diagnosing errors
1938 through query histories,” in Proc. ACM Int. Conf. Manage. Data,
1939 2017, pp. 1369–1384.
1940 [105] Y. Wang, Y. Feng, R. Martins, A. Kaushik, I. Dillig, and S. P. Reiss,
1941 “Hunter: Next-generation code reuse for Java,” in Proc. ACM SIG-
1942 SOFT Int. Symp. Found. Softw. Eng., 2016, pp. 1028–1032.
1943 [106] W. Weimer, “Patches as better bug reports,” in Proc. Int. Conf.
1944 Generative Program. Component Eng., 2006, pp. 181–190.
1945 [107] W.Weimer, Z. P. Fry, and S. Forrest, “Leveraging program equiva-
1946 lence for adaptive program repair: Models and first results,” in
1947 Proc. IEEE/ACM Int. Conf. Autom. Softw. Eng., 2013, pp. 356–366.
1948 [108] W.Weimer, T.Nguyen, C. LeGoues, and S. Forrest, “Automatically
1949 finding patches using genetic programming,” in Proc. ACM/IEEE
1950 Int. Conf. Softw. Eng., 2009, pp. 364–374.
1951 [109] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Context-
1952 aware patch generation for better automated program repair,” in
1953 Proc. ACM/IEEE Int. Conf. Softw. Eng., 2018, pp. 1–11.
1954 [110] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for auto-
1955 mated program repair,” in Proc. IEEE/ACM Int. Conf. Autom.
1956 Softw. Eng., 2017, pp. 660–670.
1957 [111] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying
1958 patch correctness in test-based program repair,” in Proc. ACM/
1959 IEEE Int. Conf. Softw. Eng., 2018, pp. 789–799.
1960 [112] J. Xuan, M. Martinez, F. Demarco, M. Clement, S. R. Lamelas
1961 Marcote, T. Durieux, D. Le Berre, and M. Monperrus, “Nopol:
1962 Automatic repair of conditional statement bugs in Java programs,”
1963 IEEETrans. Softw. Eng., vol. 43, no. 1, pp. 34–55, Jan. 2017.
1964 [113] J. Yang,A. Zhikhartsev, Y. Liu, andL. Tan, “Better test cases for bet-
1965 ter automated program repair,” in Proc. Eur. Softw. Eng. Conf. and
1966 ACMSIGSOFT Int. Symp. Found. Softw. Eng., 2017, pp. 831–841.
1967 [114] Z. Yu, M. Martinez, B. Danglot, T. Durieux, and M. Monperrus,
1968 “Alleviating patch overfitting with automatic test generation: A
1969 study of feasibility and effectiveness for the Nopol repair sys-
1970 tem,” Empirical Softw. Eng., vol. 24, no. 1, pp. 33–67, Feb. 2019.
1971 [115] H. Zhong and Z. Su, “An empirical study on real bug fixes,” in
1972 Proc. Int. Conf. Softw. Eng., May 2015, pp. 913–923.

1973 Afsoon Afzal received the MS degree in software
1974 engineering from the School of Computer Sci-
1975 ence, Carnegie Mellon University, in 2019. She is
1976 working toward the PhD degree in the School of
1977 Computer Science, Carnegie Mellon University.
1978 She is interested in applying automated quality
1979 assurance methods, including automated testing
1980 and repair to evolving and autonomous systems.
1981 More information is available at: http://www.cs.
1982 cmu.edu/�afsoona.

1983ManishMotwani received theMS degree from the
1984College of Information and Computer Sciences,
1985University of Massachusetts Amherst, in 2018. He
1986is working toward the PhD degree in the College
1987of Information and Computer Sciences, University
1988of Massachusetts Amherst. His research involves
1989studying large software repositories to learn inter-
1990esting phenomena in software development and
1991maintenance, and to use that knowledge to design
1992novel automation techniques for testing and pro-
1993gram repair. More information is available at: http://
1994people.cs.umass.edu/�mmotwani/.

1995Kathryn T. Stolee received the BS, MS, and PhD
1996degrees from the University of Nebraska-Lincoln.
1997She is an assistant professor with the Department
1998of Computer Science, North Carolina State Univer-
1999sity. She received an NSF CAREER award. Her
2000research interests include program analysis, code
2001search, and empirical studies. She is a member of
2002the IEEE. More information is available at: http://
2003people.engr.ncsu.edu/ktstolee/.

2004Yuriy Brun received the PhD degree from the Uni-
2005versity of Southern California, in 2008 and com-
2006pleted his postdoctoral work with the University of
2007Washington, in 2012. He is an associate professor
2008with theCollege of Information andComputer Scien-
2009ces, University of Massachusetts Amherst. His
2010research focuses on software engineering, self-
2011adaptive systems, and testing software for fairness.
2012He received an NSF CAREER award and an IEEE
2013TCSC Young Achiever in Scalable Computing
2014Award. He is a seniormember of the IEEEand a dis-
2015tinguished member of the ACM. More information is
2016available at: http://www.cs.umass.edu/�brun/.

2017Claire Le Goues received the BA degree in com-
2018puter science from Harvard University and the MS
2019and PhD degrees from the University of Virginia.
2020She is an associate professor with the School of
2021Computer Science, Carnegie Mellon University,
2022where she is primarily affiliated with the Institute
2023for Software Research. She received an NSF
2024CAREER award. She is interested in constructing
2025high-quality systems in the face of continuous
2026software evolution, with a particular interest in
2027automatic error repair. She is a member of the
2028IEEE. More information is available at: http://
2029www.cs.cmu.edu/�clegoues.

2030" For more information on this or any other computing topic,
2031please visit our Digital Library at www.computer.org/publications/dlib.

20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 45, NO. X, XXXXX 2019

http://www.cs.cmu.edu/~afsoona
http://www.cs.cmu.edu/~afsoona
http://www.cs.cmu.edu/~afsoona
http://people.cs.umass.edu/~mmotwani/
http://people.cs.umass.edu/~mmotwani/
http://people.cs.umass.edu/~mmotwani/
http://people.engr.ncsu.edu/ktstolee/
http://people.engr.ncsu.edu/ktstolee/
http://www.cs.umass.edu/~brun/
http://www.cs.umass.edu/~brun/
http://www.cs.cmu.edu/~clegoues
http://www.cs.cmu.edu/~clegoues
http://www.cs.cmu.edu/~clegoues

