
Analyzing the Impact of Social Attributes on
Commit Integration Success

Mauricio Soto, Zack Coker, and Claire Le Goues

School of Computer Science

Carnegie Mellon University, Pittsburgh PA

mauriciosoto@cmu.edu, zfc@cs.cmu.edu, clegoues@cs.cmu.edu

Abstract—As the software development community makes it
easier to contribute to open source projects, the number of
commits and pull requests keep increasing. However, this exciting
growth renders it more difficult to only accept quality contribu-
tions. Recent research has found that both technical and social
factors predict the success of project contributions on GitHub.
We take this question a step further, focusing on predicting
continuous integration build success based on technical and social
factors involved in a commit. Specifically, we investigated if social
factors (such as being a core member of the development team,
having a large number of followers, or contributing a large
number of commits) improve predictions of build success. We
found that social factors cause a noticeable increase in predictive
power (12%), core team members are more likely to pass the
build tests (10%), and users with 1000 or more followers are
more likely to pass the build tests (10%).

Keywords-Social Attributes; Travis CI; GitHub; Social Net-
works; Predicting Integration Success; Social Coding

I. INTRODUCTION

For managers of an open source project, it is important to

ensure that the project consists of high quality contributions.

As social coding sites attract more users and projects become

more popular, they receive ever more community contribu-

tions. As the number of project contributions increases, the

project must dedicate more time to vetting these contributions.

The open source community has developed various techniques

to vet project contributions, such as requiring that pull requests

be approved by a core team member [4]. This can become

a bottleneck, and thus it is beneficial to prioritize certain

contributions, ideally by predicted quality.

Ideally, the decision to include code in a project is mer-

itocratic, such that only code quality is a factor in the deci-

sion [11]. However, beyond commit complexity or correctness,

past studies have shown that the social factors describing the

committing developer also importantly predict contribution

success [12], [13]. Thus, both technical factors, which describe

the commit’s complexity, and social factors, which describe

the developer’s experience, are important when investigating

contribution success (and thus by extension predicted quality).

This previous work has focused on the predicted accep-

tance of open source pull requests [12], [13] and continuous
integration (CI) builds in a single project [7], [8], [15]. By

contrast, we are interested in analyzing contribution quality in

continuous integration across multiple open source projects.

While pull request quality is ultimately determined through

manual inspection, continuous integration uses test cases to

automatically assess commit quality, and thus may provide

different quality predictors. We investigate the factors related

to continuous integration build success across open source

projects. In this study, we analyze a large set of technical

and social attributes and how these can be used to predict

a contribution’s quality, measured by the success of build

integration jobs. We performed this analysis on a large cor-

pus of open source projects which incorporated continuous

integration in their development practice. When a contribution

to these projects passes integration tests, it suggests that the

project developers might have confidence in the changes. Thus,

we use the commit’s build integration status as a proxy for its

quality.

We analyzed contributions in the context of continuous

integration using technical factors and one social factor from

the challenge corpus [2], and social factors from a developer’s

GitHub profile. We used the technical factors to estimate the

commit’s complexity, and the social factors to estimate the

developer’s experience. Overall, our study investigates how

different technical and social factors predict contribution qual-

ity. This information can help core team members prioritize

project contributions, and increases understanding of quality

enforcement in software development.

We find that social factors are an important predictor of

build success, but do not fully predict whether a contribution

will pass all build tests; that core team members are more

likely to achieve build success than non-core members; and

that developers with more followers are more likely to submit

commits that pass the continuous integration build.

II. RESEARCH DESIGN

We present the approach we took to design our study by

following the Goal-Question-Metric (GQM) methodology [1]:

Goal. The goal of this study is to understand the relationship

between social factors that describe developer’s experience

(stars, followers, etc.) and technical properties that describe

a commit’s complexity (files added, files modified, etc.) when

predicting whether a developer’s commit will pass the contin-

uous integration build tests for the project.

Question. We are interested in understanding whether social

factors, used as a proxy for experience, can be used to predict

commit integration success. If so, developers and integrators

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.34

483

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.34

483

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.34

483

2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR)

978-1-5386-1544-7/17 $31.00 © 2017 IEEE

DOI 10.1109/MSR.2017.34

483



will have another tool to estimate the quality of a developer’s

contribution. Our main research question is:

Do social attributes improve prediction of a contri-
bution’s build success when compared to predictions
based only on technical attributes?

If social attributes improve build success predication, we are

interested in investigating how particular attributes, such as the

developer’s follower count, similarly correlate with success.

Metric. We measured software contribution quality by the

build status of the commit. We used a decision tree classi-

fier [9] to predict build success. Decision trees use binary

decisions on the attributes to predict a final class. They are well

established and interpretable. We used a Weka J48 decision

tree for readability. We first built a decision tree classifier using

only technical factors to predict build integration success. We

then included the social factors, to identify the degree to which

social factors improve the model’s predictive power.

III. BUILDING THE DATASET

We built a data set consisting of both technical and social

factors:

Technical Factors. We collected technical factors from the

Mining Software Repositories (MSR) Challenge data set [2].

We extracted the following technical attributes to proxy a

commit’s complexity:

• Source churn (changed lines of code).

• Files added by this commit.

• Files modified by this commit.

• Tests added by this commit.

• Tests deleted by this commit.

• Total source files in project at the time of the commit.

• Number of source lines of code in the project at the time

of the commit.

• Travis status, or status of the Travis build integration.

The first five factors describe the changes in the commit.

The next two factors cover the size of the project. These factors

proxy both the commit’s complexity, and the complexity of the

project incorporating it.

Social Factors. We created a web scraper to extract social data

from developers’ profiles. We used the commit hash and the

project name in the MSR Challenge [2] data set to locate the

commit web page, leveraging github.com’s URL standard for

projects and commit hashes. We scraped the commit author’s

username from each commit page to collect the following from

the user’s public profile:

• Number of repositories the developer can access (includ-

ing those the developer owns, contributes to, or for which

they have organizational membership access).1

• Number of projects the developer has stared. Starring a

project to shows approval of the repository and creates a

bookmark for later access.2

• Number of developers that follow the author.

1https://developer.github.com/v3/repos/
2https://help.github.com/articles/about-stars/

• Number of developers that the author follows.

• Number of contributions made in the last year.

We also added one item from the MSR Challenge data set,

indicating whether the commit’s developer is a core member

of the associated project. These social factors are all tied to a

GitHub user’s profile, and are generally correlated with users’

open source engagement. Thus, we use them as a proxy for

experience. If we were unable to find information about an

author, we assigned empty values to the commit.

Compiling the data sets. We compiled the gathered data into

two data sets: one with only the technical factors and the

build status, and another with both technical and social factors

and the build status. We performed this split to analyze how

well technical factors alone, and then both technical and social

factors together predict build integration status.

The challenge data set [2] consists of commits that date as

far back as 2011. The social data we gathered is accurate for

January 2017. To mitigate the threat of using future results

to predict previous events, we only include commits from the

years 2014–2016. Our intuition is that these social attributes

are unlikely to have significant recent changes.

We converted all Travis build statuses to two possible

values: successful (passed in the challenge data set) and

unsuccessful (errored, failed, canceled or started in the original

data set). We also condensed all passing and failing builds in

a commit to a single pass or fail for each build status. If the

commit contained both passing and failing build statuses, we

treat it as both a passing and failed build.

74.43% of the builds in the reduced data set were successful,

and thus a naı̈ve classifier that always guesses “successful”

would succeed 74.43% of the time. To penalize misclassifica-

tion for both classes equally, we created a second balanced
data set by randomly sub-sampling the successful builds until

the two build status were equal, through a process known

as downsampling. We downsampled the entire data set and

then trained decision tree classifiers on both. We validated

the classifiers with cross-validation. Since the cross-validation

is stratified, the 50-50 proportion is maintained through the

training and testing folds for the downsampled data. We

present results for both data sets in Section IV-A, and only

the full data set in Sections IV-B and IV-C.

IV. EVALUATION

We assess our main research question using decision tree

classifiers [9], using the Weka J48 decision tree [6], [10]

with default settings and 10-fold cross-validation. We present

classification success rate for technical versus social factors

(Section IV-A); build success rate of core project members

versus non-core members (Section IV-B); and the relationship

between follower count and build success (Section IV-C).

A. Classification with and without social factors

Table I shows the results of running the two data sets

through the default Weka J48 decision tree algorithm. Without

downsampling, the decision tree shows an increase of 4.09%

correctly classified instances when adding social data. On

484484484484



Non-Downsampled Downsampled
Technical Technical and Social Technical Technical and Social

Correctly Classified Instances 285882 (77.01%) 301068 (81.10%) 121694 (64.10%) 144441 (76.09%)
Incorrectly Classified Instances 85326 (22.99%) 70140 (18.90%) 68147 (35.90%) 45400 (23.91%)
Kappa statistic 0.21 0.42 0.28 0.52
Average Precision 0.75 0.80 0.65 0.76
Average Recall 0.77 0.81 0.64 0.76
Average F-Measure 0.72 0.79 0.63 0.76
Mean absolute error 0.34 0.28 0.43 0.32
Increase when adding social attributes 4.09% 11.99%

TABLE I
PREDICTIVE POWER DECISION TREES WITH A NON-DOWNSAMPLED DATA SET (2ND AND 3RD COLUMN) AND DOWNSAMPLED (4TH AND 5TH COLUMN).

the downsampled data, the decision tree created from the

technical attributes had a classification accuracy of 64.10%,

which outperformed the naı̈ve baseline model that guesses all

builds passed (50.00%). After including the social data in the

data set, the classifier correctly predicted 76.09% of the data

set, about a 12% improvement over the model that uses only

the technical data. These results show that while technical data

is helpful in predicting build integration success, social data

can be used to measurably improve predictive accuracy.

The precision, recall, and F-measure are calculated over

the successful and unsuccessful classes and then averaged

(standard in Weka). All these measures, along with the Kappa

statistic, increase with social features, which provide evidence

that social factors improve build success predictions. The mean

absolute error also decreases, further substantiating the result.

B. Build success by core team member

The decision tree results suggested that core team mem-

bership is important to classifying build success (in sup-

plemental material), and thus we investigated the question

directly. We classified the build success rate for core team

members and non-core team members using the data set

without downsampling. We found that core team members

triggered 89.39% (331827/371208) of the builds in the data

set; 75.58% (250808/331827) of those builds passed. Non-core

team members triggered 10.61% (39381/371208) of the builds

in the data set, and 64.70% (25479/39381) of the builds passed.

The difference in success rate is statistically significant (the

p-value from a Fisher exact test is 0.0000), suggesting that it

is extremely unlikely to have occurred by chance. Thus, in our

dataset, core team members have a successful build integration

more often than non-core team developers, likely because core

team members are naturally more familiar with the codebase.

C. Follower relationship with build success

We also investigated whether developers with followers

were more likely to have a successful build integration, since

followers could be seen as “vouching” for a developer’s

abilities. We therefore investigated the relationship between

follower count and build success rate (on the data without

downsampling). We first investigated whether developers with

one or more followers were more likely to pass the build

than those without any followers at all. We removed commits

without any author profile information (20374 builds, reducing

the total build count to 350834). Only 0.87% (3059/350834)

of the contributions in the data set were performed by devel-

opers with zero followers. Developers with 0 followers had a

successful build commit 68.49% (2095/3059) of the time. De-

velopers with one or more followers were successful 74.78%

(260056/347775) of the time. The p-value of this difference,

calculated with a Fisher exact test, is 0.000, suggesting the

difference in commit success rate between developers with

no followers and those with at least one follower is very

unlikely to have occurred by chance. By contrast, developers

with a large number of followers (1000 or more), performed

6.94% (24347/350834) of the contributions in the data set;

their contributions had a 78.61% (19138/24347) success rate.

The p-value of the difference between this success rate and

that of developers with no followers is again 0.0000.

These results suggest that developers with more followers

are more likely to have a successful integration build. This

may be due to the fact that developers with followers are more

likely to have open source development experience, and the

developers’ experience influenced their build success.

V. THREATS TO VALIDITY

In the study, we use Weka, a well known machine-learning

toolkit, to analyze our data. Like all tools, Weka may contain

bugs. Nonetheless, it is a community tested open source tool,

which mitigates threats to internal validity. We also release our

scripts, data, and decision tree results.3

We mitigate the risk that our results fail to generalize

externally by studying a broad and rich data set [2] comprising

1,359 popular projects. Similarly, the social factors we study

may not apply to closed-source applications; however, open-

source ecosystems are intellectually valuable sources of study

on their own. Other concerns include the possibility that social

factors have changed significantly in the past three years,

that unsuccessful builds are due to incorrect test cases (rather

than low quality contributions), and that information is lost

in collapsing commits’ multiple builds. We believe these are

similarly mitigated by a large and varied data set, but leave

investigation of the effects of these decisions to future work.

VI. RELATED WORK

The most similar related work to this paper is a case study

investigating how social and technical factors affect build

3https://github.com/squaresLab/MSR-challenge-2017

485485485485



success on a project with 40 developers [7]. We focus on a

wide range of open source projects and measure experience

through developer profile information.

Other work has investigated the effects of various factors,

such as team organization, on predicting build success in a sin-

gle project [8], [15]. Previous investigations have established

relationships between both social and technical attributes and

different measures of success, such as pull request accep-

tance [4], [5], [12], [13] or evaluation latency [17].

Tsay et al. [12] show the importance of the social connection

between the developer initiating a pull request and the project

integrators. We look at a broader aspect of social factors, and

focus on predicting the Travis CI build success. Gousios et

al. [4] found that the commit change location is an important

indicator to commit acceptance rate and that including test

cases increases a commit’s acceptance rate [5]. We found that

number of followers and being a core member are important

indicators of build success.

Bettenburgh et al. [3] discuss the impact of social inter-

actions with post-release defects, while Vasilescu et al. [14]

explore how different project characteristics (programming

language, project age, etc.) affect commit success when inte-

grated into the automatic build process. In our study, we focus

on the comparison between similar technical characteristics

and social attributes. Yu et al. [16] analyze the impact of

CI usage in GitHub and its correlation with software quality,

while we focus on gain in predictability of software quality

when using CI.

VII. CONCLUSION

We have analyzed how technical and social factors can

be used to predict high quality open source contributions,

measured by continuous integration build success. We found

social factors improve predictions of build success, technical

factors led to a 14% increase in predictive power, and adding

social factors led to another 12% increase.

Overall, we conclude that social attributes proxying experi-

ence, such as whether the developer is a core project contrib-

utor, noticeably influence build success prediction, especially

on the downsampled data. In particular, core team members

are more likely to have the build integration pass than non-

core team members. This result provides evidence that non-

core team member commits may not be scrutinized as closely

as core team member commits before the integration build

tests, although further study is required to draw definitive

conclusions. Likewise, developers with more followers are

more likely to pass the build. Developers with 1000+ followers

were more than 10% more successful in their builds compared

to developers with no followers. This suggests that open source

developers with high quality commits may be more likely to

have a large number of followers.

Although we find experience is an imperfect indicator, ex-

perienced developers appear more likely to make high quality

commits.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-

tional Science Foundation Graduate Research Fellowship un-

der Grant No. DGE-1252522. The authors also gratefully

acknowledge the partial support of the AFRL (AFRL Contract

No. FA8750-15-2-0075). Any findings or recommendations

are those of the author(s) and do not necessarily reflect the

views of the sponsoring agencies.

REFERENCES

[1] Victor R Basili and David M. Weiss. A methodology for collecting valid
software engineering data. In Transactions on Software Engineering,
pages 728–738, 1984.

[2] Moritz Beller, Georgios Gousios, and Andy Zaidman. TravisTorrent:
Synthesizing Travis CI and GitHub for full-stack research on continuous
integration. In Mining Software Repositories, MSR ’17, page (to appear),
2017.

[3] Nicolas Bettenburg and Ahmed E. Hassan. Studying the impact of social
interactions on software quality. In International Conference on Program
Comprehension, ICPC ’10, pages 124–133, 2010.

[4] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An ex-
ploratory study of the pull-based software development model. In
International Conference on Software Engineering, ICSE ’14, pages
345–355, 2014.

[5] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie van
Deursen. Work practices and challenges in pull-based development:
The integrators perspective. In International Conference on Software
Engineering, ICSE ’15, pages 358–368, 2015.

[6] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten. The WEKA data mining software:
An update. SIGKDD Explorations Newsletter, 11(1):10–18, November
2009.

[7] Ahmed E. Hassan and Ken Zhang. Using decision trees to predict the
certification result of a build. In Automated Software Engineering, ASE
’06, pages 189–198, 2006.

[8] Irwin Kwan, Adrian Schroter, and Daniela Damian. Does socio-
technical congruence have an effect on software build success? A
study of coordination in a software project. Transactions on Software
Engineering, 37(3):307–324, May 2011.

[9] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–
106, March 1986.

[10] Ross Quinlan. C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers, 1993.

[11] Walt Scacchi. Free/Open source software development: Recent research
results and emerging opportunities. In Foundations of Software Engi-
neering: Companion Papers, FSE ’07, pages 459–468, 2007.

[12] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and
technical factors for evaluating contribution in GitHub. In International
Conference on Software Engineering, ICSE ’14, pages 356–366, 2014.

[13] Jason Tsay, Laura Dabbish, and James Herbsleb. Lets talk about it:
Evaluating contributions through discussion in GitHub. In Foundations
of Software Engineering, ICSE ’14, pages 144–154, 2014.

[14] Bogdan Vasilescu, Stef van Schuylenburg, Jules Wulms, Alexander
Serebrenik, and Mark G. J. van den Brand. Continuous integration in a
social-coding world: Empirical evidence from GitHub. In International
Conference on Software Maintenance and Evolution, ICSME ’14, pages
401–405, 2014.

[15] Timo Wolf, Adrian Schroter, Daniela Damian, and Thanh Nguyen.
Predicting build failures using social network analysis on developer
communication. In International Conference on Software Engineering,
ICSE ’09, pages 1–11, 2009.

[16] Yue Yu, Bogdan Vasilescu, Huaimin Wang, Vladimir Filkov, and
Premkumar Devanbu. Initial and eventual software quality relating
to continuous integration in GitHub. Computing Research Repository,
http://arxiv.org/abs/1606.00521, 2016.

[17] Yue Yu, Huaimin Wang, Vladimir Filkov, Premkumar Devanbu, and
Bogdan Vasilescu. Wait for it: Determinants of pull request evaluation
latency on GitHub. In Mining Software Repositories, MSR ’15, pages
367–371, 2015.

486486486486


