
LEARNING TO SUPEROPTIMIZE REAL-WORLD PRO-
GRAMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Program optimization is the process of modifying software to execute more effi-
ciently. Superoptimizers attempt to find the optimal program by employing signif-
icantly more expensive search and constraint solving techniques. Generally, these
methods do not scale well to programs in real development scenarios, and as a re-
sult superoptimization has largely been confined to small-scale, domain-specific,
and/or synthetic program benchmarks. In this paper, we propose a framework to
learn to superoptimize real-world programs by using neural sequence-to-sequence
models. We created a dataset consisting of over 25K real-world x86-64 assem-
bly functions mined from open-source projects and propose an approach, Self
Imitation Learning for Optimization (SILO) that is easy to implement and out-
performs a standard policy gradient learning approach on our dataset. Our method,
SILO, superoptimizes 5.9% of our test set when compared with the gcc version
10.3 compiler’s aggressive optimization level -O3. We also report that SILO’s
rate of superoptimization on our test set is over five times that of a standard policy
gradient approach and a model pre-trained on compiler optimization demonstra-
tion.

1 INTRODUCTION

Program optimization is a classical problem in computer science that has existed for over 50 years
McKeeman (1965); Allen & Cocke (1971). The standard tool for generating efficient programs is an
optimizing compiler that not only converts human-written programs into executable machine code,
but also performs a number of semantics-preserving code transformations to increase speed, reduce
energy consumption, or improve memory footprint (Aho et al., 2006). Most optimizing compilers
use semantics-preserving heuristic-based optimizations. These optimizing transformations gener-
ally need to be written by experts for an individual compiler, and are applied to an intermediate
representation of the code produced over the course of transforming high-level code into executable
machine code. In an effort to automatically create optimized programs that surpass human-defined
heuristics, the research community has pioneered automated optimization methods, or “superopti-
mizers.” These superoptimizers may outperform compiler-based optimizations, but are difficult to
employ in practice. Research in machine learning-based program optimization remains relatively
under-explored, especially in light of the progress deep learning models have made in reasoning
about and generating code for a variety of tasks Allamanis et al. (2018); Chen et al. (2021).

In this work, we investigate the ability of deep neural networks to optimize real-world programs
mined from Github. For this, we created Big Assembly, a dataset consisting of over 25K functions
in x86-64 assembly mined from online open-source projects from Github, which enables experimen-
tation on large-scale optimization of real-world programs. We also propose an easy to implement
algorithm Self Imitation Learning for Optimization (SILO) that progressively improves its super-
optimization ability with training. Our results indicate that it superoptimizes 5.9% of our test set
beyond gcc -O3, over five times the rate of a model pre-trained on the outputs of an optimiz-
ing compiler as well as a model fine-tuned with policy gradient methods. Instead of focusing on
customized search method unique to a language’s implementation and semantics, our methodology
relies on a dataset of demonstrations for pre-training as well as a test case generator, a sandbox for
executing programs, and a method for verifying program equivalence.
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2 PROBLEM FORMULATION

The superoptimization task is, when given a specification for a program S and a reference program
Fref (which meets the specification), to generate an optimized program Fo that runs more efficiently
and is equivalent to the reference program Fref . In this paper we focus on program optimization at
the assembly level, so S, Fref , and Fo are all programs written in X86-64 assembly code. S is a
program with no optimizations applied at all and its purpose is to demonstrate desired program
semantics. Fref is an assembly program produced by the optimizing compiler gcc at its aggressive
-O3 optimization level.

Specifically, our goal is to learn a model fθ : S 7→ Fo such that a model-generated (optimized)
program F̂o attains lower cost, and ideally minimal cost, under a cost function C(·) evaluated on a
suite of K input-output test cases {IO}Kk=1 (for example energy consumption or runtime). Here,
I represents the hardware state prior to executing the program (i.e., input) and O represents the
hardware state after executing the program (i.e., output). This model-generated program must meet
the specification, which is determined by a verification function V(·) ∈ {0, 1}. More details about C
and V are located in Section 5. The learned model’s objective is then to produce rewrites that meet
the condition:

C
(
F̂o; {IOk}kk=1

)
< C

(
Fref ; {IOk}Kk=1

)
s.t. V( F̂o,S) = 0 (1)

In order to train our model on some of the optimizations that are present in modern compilers in
a supervised manner and to improve it by learning from experience a dataset is necessary. Our
training set Do therefore consists of N tuples of (1) an I/O test suite {IOk}Kk=1, (2) a compiled and
unoptimized program specification S, (3) and a compiled and aggressively optimized program Fref :

Do =

{(
{IOi

k}k=1...K , Si, Fi
ref ,

) }
i=1...N

(2)

In Section 4 we explain our methodology for learning to superoptimize programs; before this, how-
ever, we first introduce our benchmark dataset for optimizing real-world programs in Section 3.

3 BIG ASSEMBLY BENCHMARK

There is no standard benchmark for evaluating superoptimization research. Some researchers have
evaluated on randomly-generated programs in a simplified domain specific language Chen & Tian
(2019); Shi et al. (2020), while others have tested on small and hand-picked programs Joshi et al.
(2002); Gulwani et al. (2011); Churchill et al. (2017). While these datasets are sufficient for demon-
strating methodological capabilities, they do not necessarily reflect the properties of real code, and
thus do not predict their performance relative to modern optimizing compilers on real-world pro-
grams. Lastly, small-scale benchmarks are insufficient for data-hungry modern deep learning.

We created a dataset, which we will refer to as Big Assembly, consisting of of 25,141 functions in
x86-64 assembly code collected by using gcc to compile programs both with (-O3) and without
(-O0) aggressive optimizations. We started by collecting 1.61 million functions from open source
projects on Github that were written in C. Of these 1.61M, we were able to mine testcases for a
dataset of over 100,000 functions. We performed two stages of sanity checks and analysis to compute
a conservative approximation of the live out registers. The first involved using SMT solvers to find
equivalence between the gcc -O0 function used as the specification S and the gcc -O3 function
used as Fref and filtered out trivial programs such as those equivaent to return 0, this reduced
our dataset to 77,813 functions. We then performed a similar pass, but instead using a test case suite
of randomly generated inputs and their corresponding outputs {IO}Kk=1 reducing our total dataset
to 25,141 functions (19,819 train, 2,193 dev, 3129 test). For verification, test case generation, and
program instrumentation, we used artifacts from the STOKE1 project with additional modifications.

1https://github.com/StanfordPL/stoke
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Table 1: A list of program optimization benchmarks from machine learning and programming lan-
guages / systems works. The three criteria for evaluating listed are the number of individual exam-
ples in the benchmark (Sz.), are the programs written by humans (H.), are the programs found “in
the wild” (i.e. in open source projects) (R.W.), and does the benchmark contain either branching or
control flow (CTL.)

DATASET SZ H. R.W. CTL.

SHI ET AL. (2020) 12,000 ✗ ✗ ✗
GULWANI ET AL. (2011) 25 ✓ ✗ ✗
CHURCHILL ET AL. (2017) 13 ✓ ✓ ✓
OURS 25,141 ✓ ✓ ✓

Table 1 compares the basic properties of our dataset to those from existing work; beyond its size, our
dataset it notable because it consists entirely of functions mined from real world codebases. It also
contains examples with more complex operations such as SIMD instructions, branching, and loops.
Additional details on how the dataset was collected are available in the supplementary materials
section.

4 LEARNING PROGRAM OPTIMIZATIONS

NEURAL PROGRAM OPTIMIZER

Our program optimization model fθ is a neural sequence-to-sequence network, where the input spec-
ification (unoptimized program) and output (optimized program) are represented as sequences of
tokens. Specifically, fθ is parameterized with a standard Transformer-based encoder-decoder model
(Vaswani et al., 2017).

LEARNING ALGORITHMS

For learning to optimize, we develop a two-stage learning approach. First, in a pre-training stage, to
capture commonly-used optimization heuristics adopted by existing optimizing compilers, we use
supervised learning to train the model on the mined corpus Do of gcc-optimized programs (E.q. 2)
described in Section 3. Next, to discover more efficient optimization strategies, we investigate fine-
tuning using policy-gradient methods and a propose an iterative learning approach, SILO.

Policy Gradient Approach As in Eq. (1), our goal is to synthesize a correct program F̂o verified
by V that outperforms a reference program Fref on the cost function C. An intuitive choice is to
use policy gradient methods to learn a policy that directly minimizes our cost function C and pro-
duces correct programs under V in expectation. Specifically, we express this dual objective via the
Lagrangian relaxation:

J(F̂o) = C
(
F̂o; {IOk}kk=1

)
+ λ V( F̂o,S). (3)

A commonly used policy gradient approach is REINFORCE with baseline Williams (1992). Based
on our minimization objective, we can express the loss using the following equation, where b(S)
is a baseline value for the given specification and p(at|a<t; S) is the model-given probability for
generating a token at time step t for sequence F̂o. In a traditional reinforcement learning context
one might seek to perform gradient ascent on the following term; however, because we are trying to
minimize the objective function, we perform gradient descent instead.

L =

T∑
t=1

log p(at|a<t; S)
(
J(F̂o)− b(S)

)
(4)
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Self Imitation Learning for Optimization (SILO) Algorithm 1 illustrates our SILO learning
approach. It consists of two steps, an exploration step (lines 4-11) where the model seeks to dis-
cover alternative optimizations that are more efficient than the compiler generated targets used in
pre-training, and a learning step (lines 12-13), where the model parameters are updated using newly
discovered optimized programs. First, in the exploration step, an exploration batch Bex is sam-
pled from the dataset D initialized with program specifications (in our case, unoptimized assembly
programs) Si and their compiler-optimized outputs Fi

ref . For each input specification Si in Bex, we
sample a model-predicted optimization F̂i

o, and execute F̂i
o on the I/O test suite {IO}Kk=1 to compute

the cost function C. If any of the new samples are both functionally equivalent by our verification
function V and also achieve a lower cost under C compared to the compiler-optimized targets in
the original dataset, the compiler-optimized target in the dataset is then replaced with the model’s
newly-discovered optimal rewrite. After the exploration step is taken, in the learning step, a separate
training batch Btr is sampled for maximum-likelihood training from the dataset which may now
contain model-optimized targets.

Self-imitation learning Oh et al. (2018) is an off-policy reinforcement learning algorithm intended to
help agents solve challenging exploration problems by learning from good past actions. Intuitively,
besides the ordinary on-policy reinforcement learning using the latest model-predicted actions, the
model is also trained on historical states s and actions a that achieve high rewards R using a cross-
entropy loss:

Lsil = − log p(a|s) max
(
(R− Vθ(s)), 0

)
(5)

where each sample ⟨a, s⟩ is weighted by how much better the off-policy return was compared to
the learned baseline Vθ(s). Our algorithm, SILO, has a few differences with standard self-imitation
learning. First, for sequences that outperform Fref we omit a learned value function and train on
the entire sequence using cross-entropy loss, as opposed to individual actions. Additionally, we do
not interpolate our loss with an on-policy reinforcement learning algorithm. Rather, we avoid the
policy gradient altogether, and instead train only on the best sequence found so far in our dataset, be
it the compiler-optimized outputs Fref or a sequence discovered that outperforms it Fo. This is also
broadly related to the “hard” EM algorithm that uses the currently best model-predicted results as
optimization targets Kearns et al. (1998).

Algorithm 1: SILO for Program Optimization
1: Initialize model f parameters θ from pre-trained model
2: Initialize dataset of program function pairs and test cases:

D = Do =
{(

{IOi}Kk=1, S
i, Fi

ref ,
) }

i=1...N
3: while budget not exhausted do
4: Sample a batch Bex from Do

5: for
(
{IOi}Kk=1, S

i, Fi
ref ,

)
in Bex do

6: sample F̂
i

o ∼ fθ(S
i)

7: calculate C(F̂
i

o), and V(F̂
i

o,S
i)

8: if V(F̂
i

o,S
i) = 0 and C(F̂

i

o) < C(Fi
ref ) then

9: Replace Fi
ref with sample F̂

i

o in D
10: end if
11: end for
12: Sample a batch Btr from D
13: Update θ via supervised learning on Btr from D
14: end while

ACTOR-LEARNER ARCHITECTURE, MODEL CONFIGURATION, AND TRAINING

One hurdle to performing program optimization at scale is that the the time required to evaluate C
and V is costly, limiting the model’s throughput of learning examples. To alleviate this bottleneck,
we utilize an actor-learner set up (Liang et al., 2018; Espeholt et al., 2018). Additional details on our
actor-learner set up are provided in the appendix.
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Our neural superoptimizer fθ uses a 3-layer transformer encoder-decoder with embedding dimen-
sion of 512 with 8 attention-heads. We utilize the Adam optimizer Kingma & Ba (2014) with the
inverse square root schedule from Vaswani et al. (2017). We pre-trained the model for 88K steps and
subsequently performed our fine-tuning algorithms for an additional 5K steps. We additionally use
SentencePiece2 to pre-process the assembly with byte-pair encoding (Sennrich et al., 2015).
Additional details on training hyperparameters and data preprocessing are located in our supple-
mentary materials section.

5 EVALUATION

In our experiments, we test our methods by taking our final model, and generate 10 model-optimized
candidates through beam search, and then calculate C and V for each. We then report results based
on the best result of all 10 candidate programs.

A primary concern in constructing the verification function V in Eq. (1) is the undecidability of
program equivalence for programs with control flow such as loops. If using testcases for equiv-
alence V as well as the cost function C challenges also lie in utilizing a testcase suite {IO}Kk=1
for either benchmarking a program’s performance or coming up with an approximate estimate for
performance.

MEASURING PROGRAM CORRECTNESS

A key claim of this work is that our superoptimizer outputs correct programs — that is, programs
that are more efficient, but still semantically equivalent, to the input programs. Program equivalence
is undecidable in the general case, motivating a complementary set of mechanisms for verifying
output program correctness. In our experiments, we confirm output program correctness for our
verification function V in two ways. First, we run synthesized programs on the provided test cases.
Second, we formally verify correctness using two solver based verifiers: the bounded SMT solver
based verifier from the standard STOKE project artifacts, and an additional verifier available from
the artifacts in the program verification work in Churchill et al. (2019). These program verifiers
are based on the state-of-the-art Z3 SMT solver De Moura & Bjørner (2008); SMT (“Satisfiability
Modulo Theories”) solvers decide the satisfiability of boolean formulas with respect to a set of
underlying theories (such as the theory of integer arithmetic).

We use both test cases and the two verifiers for several reasons. High coverage test suites are in-
formative in terms of program correctness, but intrinsically incomplete. Meanwhile, verifiers do not
always scale, especially to programs with arbitrary numbers of loop iterations to ensure termination.
As is standard we configured a maximum bound of b (set to 4) loop iterations, and the process does
not timeout by taking over T seconds (set to 150). Verification is thus also incomplete past those
bounds, and limited by the correctness of the verifiers’ underlying models.

Indeed, we manually observed cases where our fine-tuning methods exploited either gaps in test
suite coverage, or bugs in the verifiers’ models of x86-64 semantics.3 Motivated by this, we use both
testcases and the two verifiers for additional robustness. While this would intuitively help mitigate
spuriousness during evaluation, it could still remain an issue when evaluating optimization of open-
domain programs. As we later explain in Section 7, we also resort to human verification to get
reliable results when reporting model performance on test sets.

MEASURING PROGRAM PERFORMANCE

We follow previous work on superoptimization of x86-64 assembly and primarily calculate the cost
function C (E.q. 1) as a static heuristic approximation of expected CPU-clock cycles. We compute
the sum of both performance cost functions from Schkufza et al. (2013) and Churchill et al. (2017).
The former is a sum of all expected latencies for all instructions in the assembly function (denoted
as Call), while the latter computes expected latencies only using executed instructions (Cexe) from
the randomly generated test suite {IO}Kk=1. Cexe is a better approximation, especially for functions

2https://github.com/google/sentencepiece
3We have since reached out to the authors of Churchill et al. (2019) regarding issues we have found
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that contain loop constructs, while Call may additionally penalize redundant instructions that are
not executed. Expected latencies were calculated by the authors of STOKE for the Intel Haswell
architecture by benchmarking and measuring instructions for servers.

6 APPLICATION TO HACKER’S DELIGHT

We apply our methods to the 25 functions chosen from the HACKER’S DELIGHT benchmark Warren
(2002), first used in Gulwani et al. (2011) for program synthesis and later in Schkufza et al. (2013)
for x86-64 program superoptimization. In the latter work, authors express they were able to either
match or outperform gcc -O3 when provided programs compiled with LLVM -O0. The superopti-
mization benchmark consists of bit-vector manipulation challenges such as “take the absolute value
of x.” Before evaluating on our large scale Big Assembly dataset in Section 7, we perform controlled
experiments on HACKER’S DELIGHT allowing for interpretable optimizations and consistency with
prior work.

.absolute_value:
movl %edi, %eax
sarl $0x1f, %eax
xorl %eax, %edi
subl %eax, %edi
movl %edi, %eax
retq

(a) -O3 code

.absolute_value:
movl %edi, %eax
sarl $0x1f, %edi
xorl %edi, %eax
subl %edi, %eax
retq

(b) Model-optimized code

Figure 1: An example of the absolute value function from HACKER’S DELIGHT optimized by gcc
-O3 on the left and the trained models on the right. For the right example, the same output was
witnessed in the results of both fine-tuning experiments. The model-optimized code demonstrates
superior register allocation.

Results We examined the results of REINFORCE and SILO with respect to two quantities: (1)
the number of programs where a superoptimized version was found at least once during the training
process, and (2) the number of programs for which a superoptimized version was found within the
top-10 hypotheses generated by beam search from the last model at the end of training. Regarding
the former metric, REINFORCE and SILO respectively found 3 and 2 superoptimized programs
during the training. For the latter metric, the final models produced by REINFORCE and SILO
output 1 and 2 superoptimized programs respectively. These results indicate that while the policy
gradient methods may have a wider breadth for exploration during the training process compared to
SILO, policy gradient methods may also be less stable in their final solutions.

7 APPLICATION TO BIG ASSEMBLY

In applying our methods to the Big Assembly dataset, we followed the same general experimental
setup as HACKER’S DELIGHT; however, we evaluated our results on held-out sets. As mentioned
in Section 5, we observed cases where our models exploited bugs in the verifiers’ models of x86-64
semantics, thus we also incorporated manual human evaluation into our reporting methodology for
the benchmark.

For both learning methods, we chose the best model of the ones checkpointed every 1K steps during
fine-tuning. We did this by choosing the model with the highest proportion of programs that were
superoptimized on a randomly-sampled subset of 329 functions from the validation set according
to our cost function C, correct according to our verification methodology V , and correct again by
manual human evaluation.

Using the chosen model, we then evaluated performance on the test set by manually checking all
reported superoptimizations for correctness. In Table 2 we report (1) the proportion of the entire test
set that was superoptimzied according to our automatic methods discussed in Section 5 as well as
(2) the actual proportion that we manually verified to be correct.
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Figure 2: A plot reflecting the proportion of the validation set sub-sample population (329 programs)
superoptimized every 1000 steps of training.

Table 2: Test set results on the Big Assembly benchmark comparing the pre-trained model, SILO
and REINFORCE with baseline. The first column (SMT Ver.) reports the proportion of programs
that beat the gcc -O3 baseline and verify using our automated evaluation methods, while the second
column (SMT + Human Ver.) reports our expected proportion of programs that additionally pass a
human evaluation step.

Model SMT Ver. SMT + Human Ver.

PRE-TRAIN 1.2% 1.0%
SILO 8.3% 5.9%
REINFORCE 0.9% 0.9%

Results We witness that our proposed algorithm SILO far outperformed REINFORCE with base-
line on this task: on the test set, SILO superoptimized 5.9% of programs and REINFORCE with
baseline superoptimized 0.9%. We also note that despite the fact we used two separate SMT based
verifiers to prove correctness, our SILO approach was capable of finding and learning generalizable
exploits in a manner that REINFORCE did not.

In our study of manually verifying assembly programs, we witnessed that across all earlier and later
stages of training, the REINFORCE model consistently superoptimized the same 5 to 6 programs
in the validation set; in other words, it did not seem to apply superoptimization patterns to any new
programs or learn any new superoptimization patterns. In contrast, the SILO model consistently
increased the number of programs it superoptimized in the held-out set over time: it seemed to
broaden its capacity to apply patterns to new programs and simultaneously learn different strategies
to superoptimize and even exploit the verifier; this trend is reflected in the Fig. 2 plot. We hypothesize
the large difference in performance can be attributed to a reward space that is both very sparse and
noisy. It is sparse, because program superoptimziations are hard to find: while training, we saw that
less than 1 in every 1,000 samples the REINFORCE model made were program superoptimizations.
The reward space in this task is noisy, because a minuscule change in the output text can have an
extreme impact on program semantics and syntactic correctness. We believe, without a method to
re-learn from past experience, the on-policy REINFORCE algorithm struggles to find the signal in
the noise.

8 RELATED WORK

Program Optimization The general undecidability of program equivalence means that there may
always be room for improvement in optimizing programs (Rice, 1953). This is especially true as
hardware options and performance goals become more diverse: what transformations are best for a
scenario may vary greatly on performance objectives such as such as energy consumption or runtime
or other factors.
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.popEntry.s:
movl 0x4(%rdi), %eax
subl $0x1, %eax
movl %eax, 0x4(%rdi)
cltq
leaq (%rax,%rax,2), %rdx
movq 0x8(%rdi), %rax
leaq (%rax,%rdx,4), %rax
retq

(a) -O3 code

.popEntry.s:
subl $0x1, 0x4(%rdi)
movq 0x8(%rdi), %rax
movslq 0x4(%rdi), %rdx
leaq (%rdx,%rdx,2), %rdx
leaq (%rax,%rdx,4), %rax
retq

(b) Model-optimized code

Figure 3: An example of a program from the Big Assembly dataset superoptimized with the SILO-
trained model. Here a subtraction is performed in memory to eliminate the instructions performing
the subtraction in %rax (in red) and storing it back in memory. This approach is followed by movslq

instead of cltq along with modified register allocation to accommodate the changes.

State-of-the-art methods for superoptimization either rely on search-based procedures (Schkufza
et al., 2013), or constraint-based methods (Sasnauskas et al., 2017). However, these methods have
difficulty scaling to larger problems, and as a result, typically do not meet the performance require-
ments of real development scenarios at compile time.

Machine-Learning-Based Program Optimization Perhaps the closest work to ours is Shi et al.
(2020) which attempted to learn symbolic expression simplification on a dataset of synthetically
generated symbolic expressions in Halide by re-writing sub-trees of the parsed expression with
reinforcement learning. The domain differs from ours; however, as the domain specific language
contains simple expressions and randomly generated programs may contain redundancies not seen
in assembly optimized by a compiler like gcc.

Another work that addressed automatic program optimization is Bunel et al. (2016). Unlike the
Halide-based experiments, the work used reinforcement learning to learn a proposal distribution for
stochastic search used in Schkufza et al. (2013). While the learned proposal distribution showed
improvements over the baseline, the method ultimately still used stochastic search, except with im-
proved search parameters. Unlike our work, the model is unable to fully control program transfor-
mations end-to-end.

9 CONCLUSION

In our work, we explored the task of program superoptimization with neural sequence models. To-
wards this goal, we utilized 1.61 million programs mined from open source projects on Github for
pre-training along with and a subset of over 25K functions with testcases that can additionally be
passed off to the SMT based verifiers in the STOKE project artifacts. We proposed SILO, a learning
approach with a two step process (1) an exploration step to search for program superoptimizations,
and (2) a learning step on the best sequences found during training. Our experiments on the Big As-
sembly dataset demonstate that SILO is able to outperform REINFORCE with baseline. We believe
that REINFORCE struggles, because program superoptimziation is a highly-challenging exploration
task with a very sparse reward space. By incorporating supervision on superoptimized sequences,
SILO is able to learn optimizations more effectively from its exploration.

Recently, large neural sequence models have been proposed as an effective method for program
synthesis in high-level programming languages such as Python or C++ from natural language spec-
ifications Yin & Neubig (2017); Chen et al. (2021); Li et al. (2022); however, to our knowledge,
relatively little work has been done to refine these models to go beyond synthesizing correct pro-
grams that meet a specification, and additionally make additional considerations for important met-
rics such as performance or readability. Given the increased availability of executable program syn-
thesis datasets, tuning neural sequence models to go beyond program synthesis and optimize for
additional metrics is a promising direction for future work.
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A ACTOR-LEARNER ARCHITECTURE

The actor-learner architecture used for training is as follows: before the training process begins,
multiple actor threads inheriting the parameters of the parent learner are created. For every iteration,
each of the actor threads independently samples a batch of program re-writes from the distribution
of the inherited model.

After sampling a batch of re-writes, an attempt is made the evaluate the rewrites by sending them
to an evaluation server. Inside the evaluation server, the programs are assembled and tested for cor-
rectness and performance to calculate C and V; more details on evaluation are located in Section 5.
The actor then sends the samples with their related cost and correctness information to the learner
module for learning. Then, the actor attempts to synchronize its parameters by inheriting a new copy,
if available, from the learner module. Fig. 4 contains an overall diagram for our entire system.

Actor
Actor

Actor
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Program
Rewrites

Assess I/O Correctness

Approximate Performance

Verify with SMT Solvers
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Figure 4: An overview of our actor-learner setup. It features interaction between a centralized learner
module, numerous asynchronously-operating actors, as well as a server for evaluating program
rewrites.

B SMT BASED VERIFIER EXPLOITS FOUND

Before the training process begins, multiple actor threads inheriting the parameters of the parent
learner are created. For every iteration, each of the actor threads independently samples a batch of
program re-writes from the distribution of the inherited model.

After sampling a batch of re-writes, an attempt is made the evaluate the rewrites by sending them
to an evaluation server. Inside the evaluation server, the programs are assembled and tested for cor-
rectness and performance to calculate C and V; more details on evaluation are located in Section 5.
The actor then sends the samples with their related cost and correctness information to the learner
module for learning. Then, the actor attempts to synchronize its parameters by inheriting a new copy,
if available, from the learner module.

In our manual evaluation stage, we witnessed the primary pattern of exploiting the SMT solver based
verifier was that of branch deleation. We present a concrete example of one such exploit paired with
the verifier’s output in Fig. 5. In the first subfigure we demonstrate the pattern exploiting the verifier
from the original STOKE project artifacts4, and in the second subfigure we show the output when
running on the verifier included in the artifacts from a follow up work on program verification.5 In
this example, a comparison is done between the hex constant 0x2e and the value located at the
address in register %rdi; if the two are equal, the program jumps to location .L1 executing a sequence
of code to place a value in the %eax register conditional on multiple tests. If the constant is not equal
to the value in memory, the jump is not taken, and the program returns with a 0 in the %eax register:
this is because the very first line of the program xorl %eax, %eax zeros out the the %eax register.

4https://github.com/StanfordPL/stoke
5https://github.com/bchurchill/pldi19-equivalence-checker
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Target Rewrite

.smtp_is_end.s: .smtp_is_end.s:
xorl %eax, %eax xorl %eax, %eax
cmpb $0x2e, (%rdi) cmpb $0x2e, (%rdi)
je .L1 je .L1
retq .L1:
.L1: retq
movzbl 0x1(%rdi), %edx
cmpb $0xd, %dl
sete %al
cmpb $0xa, %dl
sete %dl
orl %edx, %eax
movzbl %al, %eax
retq

Equivalent: yes

(a) Output from the original STOKE bounded verifier

Target Rewrite

.smtp_is_end.s: .smtp_is_end.s:
xorl %eax, %eax xorl %eax, %eax
cmpb $0x2e, (%rdi) cmpb $0x2e, (%rdi)
je .L1 je .L1
retq .L1:
.L1: retq
movzbl 0x1(%rdi), %edx
cmpb $0xd, %dl
sete %al
cmpb $0xa, %dl
sete %dl
orl %edx, %eax
movzbl %al, %eax
retq

[bv] Checking pair: 0 1 2 4; 0 1 2 3
Couldn’t take short-circuit option without memory.
[bv] Paths 0 1 2 4 / 0 1 2 3

verified: true
[bv] Checking pair: 0 1 2 4; 0 1 2 3
Couldn’t take short-circuit option without memory.
[bv] Paths 0 1 2 4 / 0 1 2 3

verified: true
[bv] Checking pair: 0 1 3 4; 0 1 2 3
We’ve finished early without modeling memory!
[bv] Paths 0 1 3 4 / 0 1 2 3

verified: true
[bv] Checking pair: 0 1 3 4; 0 1 2 3
We’ve finished early without modeling memory!
[bv] Paths 0 1 3 4 / 0 1 2 3

verified: true
Equivalent: yes

(b) Output from verifier in the artifacts from Churchill et al. (2019).

Figure 5: An example of the common exploit where the right hand side deletes the branch of code
following .L1. If the third and fourth lines (je .L1; .L1:) are removed, then the verifier actually
returns correctly.

Deletion of the branch following .L1 is incorrect. We believe that the verifiers struggle with forms
of branching and jump statements very often found in real-world programs. This is despite the fact
that previous works the verifiers were used for included loops (which depend on jump statements)
or branching. We found that when we removed the jump and location statement from the spurious
rewrite, thereby preserving function semantics and eliminating all branching, both verifiers correctly
identified that the two programs were not equivalent.
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C ADDITIONAL INFORMATION ON THE BIG ASSEMBLY BENCHMARK

Data Collection Our Big Assembly benchmark was mined from open source projects imple-
mented in the C programming language on Github. Our programs were disassembled using GNU
Binutils’ objdump into x86-64 assembly, and split into individual functions. We performed the pro-
cess twice on the same set of source code, so that we could create a parallel corpus of functions. We
split our dataset into train, development, and test sets based at the level of entire individual github
projects. We deduplicated by removing any overlapping binaries between the datasets. We also dedu-
plicated at the individual function level by removing string matches after removing function names
from assembly functions. Lastly, we removed programs pairs from the dataset if either the source or
target program had length greater than 512 after byte-pair encoding tokenization.

Setting Live out and Filter Spurious Examples As mentioned in Section 3 for our each function
in our dataset, we were required to determine the live out set, the portion of the CPU state required
for determining the equivalence between programs. We also determine heap out, which is a boolean
flag that determines whether or not we should also check the heap for equivalence as well. We
perform this sanity check by determining what parts of the CPU state are equivalent between the
gcc -O0 function and the gcc -O3. Pseudocode for how live out is described in Algorithm 2, in
this algorithm we refer to the gcc -O0 function as Fu.

In line 1, the algorithm begins by initializing live out with all possible CPU registers. In lines 2-
5, until either the computation budget is exhausted or the live out set reaches a fixed point, we
iteratively execute the function get live out which incrementally determines the candidate live out
set. It works by either executing the testcase suite or runs the SMT solver based verifier, analyzing
any difference in the resulting CPU state, pruning any part of the CPU state that differs, and then
returning the subset of the CPU state that may be equivalent between Fuand Fref . This may need to
be run iteratively, because after pruning live out with respect to one counter example, it is possible
another counterexample may still trigger a difference in other parts of the CPU state. For most of the
general purpose CPU registers, we also perform this pruning at the sub-register level, allowing the
register size for equivalence to be pruned down to the lower 32, 16, and 8 bits. If the computation
budget is exhausted, the program returns early, and the program is discarded from the dataset.

After determining live out, in lines 6-10 an additional check is done to see if both programs are equiv-
alent when checking the heap. If they are, heap out is set to true, and this information is recorded to
be used for the fine-tuning phases. Lastly in lines 12-15, we perform a final sanity check to ensure
that none of our programs are equivalent to a set of spurious programs such as a null program, a
return 0, and a return 1. If a program is equivalent to one of these highly simplistic pro-
grams, it is discarded from our dataset.

Algorithm 2: Set Live Out and Filter Examples
1: Initialize: live out = ALL LIVE OUT
2: repeat
3: old live out = live out
4: live out = get live out(Fu,Fref , live out)
5: until old live out ̸= live out or budget exhausted
6: if diff (Fu,Fref , live out , heap out = True) then
7: heap out = False
8: else
9: heap out = True

10: end if
11: is spurious = False
12: for Fspur in SPURIOUS do
13: if ¬diff (Fspur ,Fref , live out , heap out) then
14: is spurious = True
15: end if
16: end for

Data Preprocessing for Training We perform additional processing on our programs that we
feed into the model to remove noise; we do this for the gcc -O0 function S as well as the gcc
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-O3 functions used for pre-training Fref . x86-64 assembly often uses GOTO-like instructions to
jump to different parts of a binary: this is one way that control flow is implemented. The jump
targets are often marked as offsets in the binary itself; however, at the individual function level these
may be canonicalized with ordinal locations (i.e. .L1, .L2, and so on). This fully preserves function
semantics while removing noise from the prediction task.

D HYPERPARAMETERS AND SETTINGS

In this section we report the hyperparameters used for fine-tuning our models.

General Hyperparameters We found that our SILO algorithm did not need hyperparameter fine-
tuning; whereas, our REINFORCE with baseline experiments were more brittle. We witnessed that
without a lower learning rate and a carefully tuned learning rate schedule, our REINFORCE experi-
ments would very often diverge before the full fine-tuning budget was exhausted. For all fine-tuning,
we used 2,000 steps warmup. For the SILO experiments, we utilized a constant factor of .50 applied
to the “noam scheduler” from Vaswani et al. (2017). For the REINFORCE models, we used a factor
of .01 for the Big Assembly dataset and a factor of .0025 for the HACKER’S DELIGHT dataset.

REINFORCE Hyperparameters For our baseline in Eq. (3), we used a mean of the objective
function for the previous 256 samples for each unique program. After subtracting the mean from
the return, we then subsequently normalized by the standard deviation of the objective function of
the previous 256 samples. For the lagrangian multiplier λ in Eq. (3), we used a penalty of 50,000.
Additionally, we follow Schkufza et al. (2013) in adding an additional penalty of 100 for every bit
in the CPU state that differed between the reference implementations and the rewrite output such
that functions with similar semantics would be penalized less than those with dramatically different
semantics. To prevent our objective function from growing too great, we also clipped the maximum
cost so it would not exceed 100,000. As is typical in many policy gradient algorithms, we also
included an entropy bonus β to encourage additional exploration: we used a constant entropy bonus
of β = 0.01 for both our HACKER’S DELIGHT and Big Assembly experiments.
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