
The Boogie Verification Debugger (Tool Paper)

Claire Le Goues0 , K. Rustan M. Leino1 , and Michał Moskal1

0 University of Virginia, Charlottesville, VA, USA
legoues@cs.virginia.edu

1 Microsoft Research, Redmond, WA, USA
{leino,micmo}@microsoft.com

Abstract. The Boogie Verification Debugger (BVD) is a tool that lets users
explore the potential program errors reported by a deductive program verifier.
The user interface is like that of a dynamic debugger, but the debugging hap-
pens statically without executing the program. BVD integrates with the program-
verification engine Boogie. Just as Boogie supports multiple language front-ends,
BVD can work with those front-ends through a plug-in architecture. BVD plug-
ins have been implemented for two state-of-the-art verifiers, VCC and Dafny.

0 Introduction

Deductive software verification technology is sufficiently mature that tools can formally
verify non-trivial programs written in semantically intricate modern languages. How-
ever, these tools remain difficult to use. They require considerable expertise, patience,
and trial-and-error, especially to decipher error conditions and verification failures. In
sum: our tools can understand our programs, but we cannot understand our tools.

In this paper, we present a verification debugger, called BVD (Boogie Verification
Debugger), to help users understand the output of a program verifier. Our tool advances
the state-of-the-art in program verification by increasing the communication bandwidth
between the verifier and the user. Much as a dynamic debugger allows a programmer to
explore a failing run-time state, the verification debugger allows her to explore—and,
by extension, understand—a failing verification state. For example, a user can inspect
the assumed values of local and heap-allocated variables. Constructing such a debugger
is challenging because of the disconnect between the theorem prover counterexample
model and the programmer’s mental model of program execution.

Verification tools vary in their automation levels. At one extreme lies fully automatic
verifiers. This class of verifier includes many abstract interpreters or model checkers;
to obtain full automation, such tools typically limit their reasoning to certain domains.
At the other extreme lies verifiers that accept user input at all proof steps. This class of
verifier describes many mechanical proof assistants; to obtain this flexibility, these tools
typically expose the user to the internal representation of proof obligations. In this pa-
per, we consider a family of verifiers between the automatic and interactive extremes,
which we refer to as auto-active verification. An auto-active verifier has two major
characteristics: the user can define assertions for the verifier to prove, and all user in-
teraction is done at the level of the program source language. For example, a user may
help the verifier along by declaring a precondition or loop invariant in the program, but

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 407–414, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

408 C. Le Goues, K.R.M. Leino, and M. Moskal

so
ur

ce
 in

pu
t

.dfy

. c

Boogie

Language
frontend

Verification
condition

Boogie

Counterexample
model

Reasoning
engine UI

BVD

Plug-ins Plug insg
VCC

Dafny

Fig. 0. BVD in the context of a failed verification in the Boogie system. Input source is compiled
to Boogie, which Boogie translates into a verification condition (VC). When the reasoning engine
cannot discharge the VC, it produces a counterexample model. BVD interacts with a language-
specific plug-in to interpret and display the counterexample model to the user.

never interacts directly with the underlying reasoning engine. Examples of auto-active
verifiers include extended static checkers [4] and program verifiers like Dafny [8] and
VCC [2].

A prevalent implementation technique for auto-active verifiers is to translate the
source program and its user annotations into an intermediate verification language,
like Boogie [1] or Why [5]. This intermediate program is used to generate a verification
condition; this condition is passed to a reasoning engine, for example a Satisfiability
Modulo Theories (SMT) solver like Z3 [3]. Intermediate verification languages like
Boogie confer similar benefits to verification as intermediate program representations
do to compilation. In particular, they allow different source-language front-ends to share
a verifier back-end. BVD, presented in this paper, works with Boogie and provides a
plug-in architecture to support different front-ends. We have built BVD plug-ins for
VCC [2] and Dafny [8].0

The rest of this short paper is organized as follows. Section 1 situates BVD in the
context of the architecture of the Boogie pipeline. Section 2 describes the features,
implementation, and use of BVD on indicative examples, and provides screenshots.
Section 3 presents related work, while Sect. 4 discusses future work and concludes.

1 High-Level architecture

Fig. 0 provides a high-level overview of the architecture of BVD as it fits in the pipeline
of a failed verification in Boogie. The Boogie verification system supports multiple lan-
guage front-ends. Input source code is transformed by a language-specific front-end
into the Boogie intermediate verification language. The Boogie tool then transforms the
intermediate program to generate a verification condition (VC) to pass to a reasoning
engine. When verification fails, the underlying reasoning engine produces a counterex-
ample model under which the postcondition does not hold. Unfortunately, this coun-
terexample model, consisting of a list of elements and interpretations of functions used
in the language encoding, does not map transparently back to the source code. BVD

0 Boogie, BVD, and Dafny are available as open-source projects at http://boogie.
codeplex.com/. VCC is available with source at http://vcc.codeplex.com/.

http://boogie.
codeplex.com/
http://vcc.codeplex.com/

The Boogie Verification Debugger 409

interacts with a language plug-in to interpret the counterexample model and display it
in a way meaningful to the end-user, and not only the verifier author.

This paper is primarily concerned with the boxed region of the diagram, which cor-
responds to the BVD tool. BVD support requires minor modification to the front-end
compiler, described below; such modifications are typically negligible in practice.

2 BVD

BVD is geared towards the debugging of failed verifications of imperative languages,
characterized by sequential execution states. Typically, regular debuggers display one
execution state at a time, through which one may step forward, and in some cases back-
ward (e.g., the OCaml debugger or IntelliTrace in VS2010). Similarly, an SMT coun-
terexample model consists of states leading to a failed assertion. Each state ultimately
corresponds to a location in the source code, and encodes relevant memory contents at
those source locations. BVD translates the SMT state sequences into “execution” states
and memory values that the user can understand, and displays them in an informative
way. This section is concerned with the details of this translation process.

2.0 Insert example

To make the discussion more concrete, consider the following Dafny program imple-
menting a linked list with insertion. The programmer has annotated the method to pro-
vide information to the verifier (line 2) and to tell the verifier what it should prove (line
4, which asserts that n has been successfully inserted):

0 class ListNode { var data : int; var next : ListNode; }
1 static method Insert(hd : ListNode, n : ListNode)
2 requires hd != null ∧ n != null;
3 modifies hd, n;
4 ensures n.next == old(hd.next);
5 { n.next := hd.next; hd.next := n; }

This method fails to verify because it is possible for hd and n to be aliases on entrance
to Insert, leading both hd->next and n->next to point to n after line 5. This violates
the postcondition. This can be addressed by adding a precondition asserting hd != n

on method entrance.
However, the verifier provides very little information to help the programmer under-

stand this failure. Its error message states that the postcondition is violated, and that line
5 is implicated. The underlying reasoning engine’s counterexample model is similarly
unhelpful. A Z3 error model, for example, represents program states as named model
elements, such as *0 -> true, *37 null and functions interpretations on elements,
such as MapType1Select -> *40 *41 *17 -> *56; else -> #unspecified

We will use this example to clarify the discussion of our tool, and will demonstrate
the tool on it and other examples.

410 C. Le Goues, K.R.M. Leino, and M. Moskal

2.1 Computing Memory Contents

The model produced by the reasoning engine contains values for a number of memory
locations in a number of states. Regular debuggers allow the user to inspect values of
variables as well as the values of fields of objects pointed to by the variables. BVD fol-
lows this model by translating the SMT’s model of memory contents into more familiar
object trees that the user can explore.

BVD names memory locations using access paths—usually source-level expressions
that access a given memory location. Example access paths in the Insert example in-
clude hd, n.next, and hd.next.data. After the execution of Insert(), n.data and
hd.next.data name the same memory location. In addition to local variables, BVD
can use Skolem constants as roots, allowing the user to explore verification-specific
states as necessary.

Values of memory locations are expanded recursively via communication between
BVD and the language plug-in. BVD supplies the program points corresponding to
counterexample states to the language-specific BVD plug-in. The latter returns a list of
root paths—typically local and global variables—available at the static program points.
BVD then supplies values of these root paths according to the model, which the plug-
in “expands” to yield additional interesting access paths. The expansion may contain
source-level fields (when the value is a pointer to an object), indexes into arrays, maps,
sets, or applications of functions. The process repeats recursively, in breadth-first order,
stopping whenever an already visited node is reached.

2.2 Displaying States and Access-Path Values

Canonical names. Some values, like integers, Booleans, or the special null pointer,
are easy to display. In contrast, regular pointers in the SMT model do not have user-
meaningful values; they are assigned place-holder values. BVD asks the language plug-
in to provide canonical (i.e., state-independent) names for them. The VCC and Dafny
plug-ins use the type of the object and a sequential number (e.g., ListNode’0).

Stable tree view. BVD displays values for both the currently and previously selected
execution states, in blue and red respectively, allowing side-by-side comparison. Some
paths may be available only in some states, e.g., hd.next.next is unavailable in state
1 because hd.next is null, but is available in state 2. To avoid abrupt changes to the
access-path tree while browsing the states, the left pane shows the union of path trees
for all states. A path’s name is greyed out if its value is unavailable in the selected state.

Fig. 1 shows BVD on the counterexample produced by Dafny on the Insert pro-
gram. Paths hd and n are roots; hd.next was generated by the Dafny BVD plug-in as
the expansion of hd. The screenshot displays hd and n in state 1 (Value) as compared to
state 2 (Previous). The right-hand pane displays the value of hd.next in all states. The
use of canonical names illustrates that hd and n are aliased: they have the same value
(ListNode’0). The current state shows the value of old(hd.next): (null). If we
advance to the final state (corresponding to the execution of the last source code line)
we will see that n.next points to ListNode’0, not null.

The Boogie Verification Debugger 411

Fig. 1. BVD on the Dafny Insert example. The right pane provides navigation through execu-
tion states, and shows the value of the currently selected access path throughout execution. For
example, hd.next is null in the first two states, and ListNode’0 in the third. The left pane
allows browsing the access path tree and inspecting values in the current (in red) and previously
selected (in blue) state, allowing for comparison. Canonical names are provided by the language
plug-in for model values that are not otherwise user-meaningful (such as ListNode’0).

2.3 Complex Data Types and Search

Skolem constants. The screen shots in Figs. 2 and 3 are of a failed VCC verification of
a recursive red-black tree implementation. Fig. 2 illustrates the use of canonical names
to display complex data type values. The m@Red..(79,15) is a Skolem constant (m)
for which a quantified invariant at line 79 column 15 fails to hold.

Sparse data structures. Fig. 2 also shows a ghost field t->owns<Tree>, introduced
by the VCC verification methodology and containing the set of objects owned by t. The
set is displayed using canonical names: it contains Node’0, does not contain Node’9,
and so on. The set representation in the SMT model is sparse—it does not say anything
about possible Node’42, because it does not need to: the value of Node’42 is irrelevant
to the verification failure. We use a similar display format for maps, arrays, and speci-
fication functions (either methodology-supplied like $inv2(...), or user-defined).

Search. Canonical names are useful for spotting aliases and understanding changes of
variables across states. The user may search for aliases or uses of a given access path
value. In a given state, a value is used by an access path if either the location pointed to
by the access path contains the value, or the access path itself mentions the value. Fig. 3
shows screenshots of some of BVD’s search capabilities. To determine correspondence
between canonical names and variables in the current state, the user right-clicks on an
access path (left screen shot) or uses the search facility (right screen shot).

Both these features are desirable and possible due to the size of the models: the
models are in the range of hundreds (up to a few thousands) of elements—too large for
the human being to look at as a whole, but much smaller than the gigabytes of heap that
a dynamic debugger may need to consider to provide such features.

412 C. Le Goues, K.R.M. Leino, and M. Moskal

Fig. 2. BVD on a failed VCC verification of a recursive red-black tree implementation. Skolem
constants receive canonical names (such as m@Red..(79,15)) as with regular variables. This
example demonstrates BVD’s treatment of sparse data structures: only values relevant to the
counterexample—those with values in the model—are displayed. Node’42, for example, is not
displayed in the ghost field t->owns<Tree>, because it is not relevant to the failure.

2.4 Plug-in Programmer Interface

The translator from source language to Boogie needs to insert special assumption state-
ments at program points that capture source code locations and variable values, which
are included in the counter-example model and can then be used to decode states dis-
played in BVD. The source-language BVD plug-in is responsible for enumerating ac-
cess paths. BVD provides the plug-in with a mapping from Boogie variables to model
elements in each marked program point, as well as complete enumeration of model
elements and associated function interpretations.

Fig. 3. Search on the red-black tree example. Right-clicking a node produces commands to jump
to other access paths containing the current value (aliases). The pop-up menu at the bottom shows
three locations containing Node’0 in the current state; the menu above it shows two other loca-
tions besides x (currently selected). The menu also allows populating the full-text search box.

The Boogie Verification Debugger 413

Writing language plug-ins is not difficult. The VCC plug-in is about 1000 lines of
C# code, while Dafny is only about 400 (mostly due to Dafny being a leaner language).
The modifications needed in the C and Dafny to Boogie translators are negligible.

3 Related Work

The idea of adding instrumentation to verification conditions for the purpose of generat-
ing usable error messages is old. For example, ESC/Modula-3 labeled sub-formulas in
verification conditions and used the labels returned by the SMT solver to determine the
source location of the potential program error [4]. ESC/Java extended the mechanism to
allow the reconstruction of an execution trace leading to the error [9]. The Spec# veri-
fier extended Boogie with a mechanism to retrieve the values of certain pre-determined
expressions in the error state; for example, this lets the verifier report the value used as
an index in an array bounds error.1

The forerunner to our work was the VCC Model Viewer2, which provides a debugger-
like, interactive user interface to explore the verification state [2]. BVD integrates into
Boogie rather than building on top of it, permitting a simpler encoding. In addition,
BVD’s architecture supports plug-ins for multiple languages, and through its use of
canonical names, permits more advanced features like stable tree views and search.

Müller and Ruskiewicz have implemented a Visual Studio dynamic debugger plug-in
for Spec#, with the same purpose [10] as our tool. The debugged program is a variation
of the original program that uses values from the SMT model to construct concrete
data structures; these are used according to the verification semantics of the program.
For example, instead of iterating a loop, the verification semantics immediately jumps
to the final loop iteration, where the values of variables are constrained only by the
loop invariant, which is how the program verifier views the execution. Their tool can
identify some spurious error reports. Our approach is simpler, in that it avoids the many
problems associated with constructing concrete data structures from a mathematical
model. Furthermore, our approach makes explicit the partial information considered by
the SMT solver, which lets us sparsely represent arrays and maps and show functions.

There has also been work to improve the user experience with software model check-
ers. The typical output of a model checker is a full execution trace leading to an error.
There has been work to prune these enormous traces by comparing successful execu-
tions with failing executions, seeking to determine the cause of the error [0,6].

The auto-active verifier VeriFast is based on symbolic execution and works with
both C and Java programs [7]. Its IDE displays, at each program point, both the heap
structure and the constraints on the values of variables and heap locations. It does not
currently display concrete values for variables, though it could in principle.

4 Conclusions and Future Work

We have presented BVD, a multi-language verification debugger that helps program-
mers decipher and diagnose program verifier output. We have built BVD plug-ins for

1 This -enhancedErrorMessagesmode was implemented by Ralf Sasse.
2 Developed by Markus Dahlweid and Lieven Desmet.

414 C. Le Goues, K.R.M. Leino, and M. Moskal

VCC and Dafny and found the verification debugger to be useful in practice. For exam-
ple, it has elucidated why, in the SiftUp and SiftDown methods of a priority-queue
heap data structure, it is necessary to include a loop invariant that establishes a connec-
tion between the parent and children of the node being updated.3 We believe that tools
like BVD are necessary to move verification into the hands of non-experts.

As future work, we wish to conduct user experiments with verification non-experts,
perhaps in a teaching setting. We wish to add features that further help narrow the cause
of an error (not just debug the symptoms) or identify spurious error reports (see Sect. 3).
Adding to the textual tree views provided in BVD, we would like to see complemen-
tary visualization (e.g., nodes and arrows) of the data structures in error states. Finally,
we would like to see an even tighter integration of aids like a verification debugger
into IDEs, so that it can become standard practice to have verification and diagnostic
information available to the programmer immediately as code is being designed.

References

0. Ball, T., Naik, M., Rajamani, S.K.: From symptom to cause: Localizing errors in counterex-
ample traces. In: POPL 2003, pp. 97–105. ACM, New York (2003)

1. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A modular
reusable verifier for object-oriented programs. In: de Boer, F.S., Bonsangue, M.M., Graf, S.,
de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 364–387. Springer, Heidelberg
(2006)

2. Cohen, E., Dahlweid, M., Hillebrand, M.A., Leinenbach, D., Moskal, M., Santen, T., Schulte,
W., Tobies, S.: VCC: A practical system for verifying concurrent C. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 23–42.
Springer, Heidelberg (2009)

3. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Ramakrishnan, C.R., Rehof, J.
(eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)

4. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended static checking. Research
Report 159, Compaq Systems Research Center (December 1998)

5. Filliâtre, J.-C., Marché, C.: The Why/Krakatoa/Caduceus Platform for Deductive Program
Verification. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 173–177.
Springer, Heidelberg (2007)

6. Groce, A., Kröning, D., Lerda, F.: Understanding Counterexamples with explain.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 453–456. Springer,
Heidelberg (2004)

7. Jacobs, B., Smans, J., Piessens, F.: A Quick Tour of the VeriFast Program Verifier. In: Ueda,
K. (ed.) APLAS 2010. LNCS, vol. 6461, pp. 304–311. Springer, Heidelberg (2010)

8. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness. In: Clarke,
E.M., Voronkov, A. (eds.) LPAR-16 2010. LNCS, vol. 6355, pp. 348–370. Springer,
Heidelberg (2010)

9. Leino, K.R.M., Millstein, T.D., Saxe, J.B.: Generating error traces from verification-
condition counterexamples. Sci. Comput. Program. 55(1-3), 209–226 (2005)

10. Müller, P., Ruskiewicz, J.N.: Using debuggers to understand failed verification attempts. In:
Butler, M., Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 73–87. Springer, Heidelberg
(2011)

3 See Test/dafny1/PriorityQueue.dfy at boogie.codeplex.com.

boogie.codeplex.com

	The Boogie Verification Debugger (Tool Paper)
	Introduction
	High-Level architecture
	BVD
	Insert example
	Computing Memory Contents
	Displaying States and Access-Path Values
	Complex Data Types and Search
	Plug-in Programmer Interface

	Related Work
	Conclusions and Future Work
	References

