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= Maintenance = up to 90% of a
project’s cost, up to $60 billion in
the US annually.

The current software
development
paradigm is broken.

~—\\¢ = Software has become too

=g complicated for humans to
—=|%. understand.
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= Most aspects of a software system
change over its lifetime.
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We should treat software like
a complex, evolving system.
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= Human modifications resemble \
evolutionary mechanisms.
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This perspective challenges
several current research
assumptions.




1. Soundness

= Complexity limits the feasibility, utility of
precise proofs of program properties.

* Biological systems do not rely on a priori
correctness.

= Future directions: new definitions of
utility; program analysis features that
enable practical adaptation.




2. Definition of acceptability

= Without soundness, we need new program
analysis metrics and benchmarks.

* Future directions: test
suites (evolving),
continued execution,
heuristics.

» Test case generation that

produces full test cases,
with expected output.




3. Separation of concerns

= Biological boundaries enforcing
/@\ +2  modularity are much richer than

'»‘\ /s
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o ﬁ‘ - their computing equivalents.

= Future directions: relax hardware/
software abstraction to achieve robustness
in dynamic and energy-constrained
environments.
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4. Homogeneity

= Biological diversity is an important source
of robustness.

i o » Protects against the spread of disease.

= Future directions: research techniques
that account for and leverage diversity.
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Conclusions

= We should think of computational systems
as complex evolving systems.

= This could dramatically change software
development and maintenance.
« May be able to revisit the dream of automatic
programming.
« May enable theoretical analyses of how

software is likely to operate over long time
scales.
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Questions!




Automatic error repair using
genetic programming (GP)
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fault-localized regions.




= Results: repaired 15 legacy C programs
(> two million LOC); < 5 minutes
(average); error types: buffer overruns,
denial of service, format string
vulnerabilities, infinite loops...

= Highlights analogy between software and
complex evolving systems.

« Assumes redundancy of functionality even in
software executing in isolation.

« Many bugs repaired by copying code between
locations, resembling biological evolution.
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