The Case for
Software Evolution

Clalre Le Goues', Stephanie Forrest*, Wes Weimer"
@) “University of Virginia *University of New Mexico NEW‘Z:XICO

11/7/10

Claire Le Goues, UVA

= Maintenance = up to 90% of a
project’s cost, up to $60 billion in
the US annually.

The current software
development
paradigm is broken.

~—\\¢ = Software has become too

=g complicated for humans to
—=|%. understand.

- 5 I’II

‘< AN
\} '

= Most aspects of a software system
change over its lifetime.

WP O et
o) o \\\'\ A
Q

—
-

* 2,
?:?({

We should treat software like
a complex, evolving system.

)
-
=
/
2
’?
e

\
A

-

\
C"

. Y
\)//// 2 IR AN \\\"\

A

/

C""

= Human modifications resemble \
evolutionary mechanisms.

11/7/10

Claire Le Goues, UVA 3

This perspective challenges
several current research
assumptions.

1. Soundness

= Complexity limits the feasibility, utility of
precise proofs of program properties.

* Biological systems do not rely on a priori
correctness.

= Future directions: new definitions of
utility; program analysis features that
enable practical adaptation.

2. Definition of acceptability

= Without soundness, we need new program
analysis metrics and benchmarks.

* Future directions: test
suites (evolving),
continued execution,
heuristics.

» Test case generation that

produces full test cases,
with expected output.

3. Separation of concerns

= Biological boundaries enforcing
/@\ +2 modularity are much richer than

'»‘\ /s
Y

o ﬁ‘ - their computing equivalents.

= Future directions: relax hardware/
software abstraction to achieve robustness
in dynamic and energy-constrained
environments.

11/7/10 Claire Le Goues, UVA 7

4. Homogeneity

= Biological diversity is an important source
of robustness.

i o » Protects against the spread of disease.

= Future directions: research techniques
that account for and leverage diversity.

11/7/10 Claire Le Goues, UVA 8

Conclusions

= We should think of computational systems
as complex evolving systems.

= This could dramatically change software
development and maintenance.
« May be able to revisit the dream of automatic
programming.
« May enable theoretical analyses of how

software is likely to operate over long time
scales.

Claire Le Goues, UVA

Questions!

Automatic error repair using
genetic programming (GP)

INPUT

EVALUATE DISTANCE
BETWEEN EACH
VARIANT AND GOAL

FAR FROM
GOAL: DISCARD

¥ CLOSER

TO
GOAL:

Delete or insert
statements (from
elsewhere in the
program).

KEEP ¥
TRYING : i

B | £

) C 1 1T /1
4 C : v_1V_|
UTATE TO CREATE NEARBY OUTPUT
VARIANTS)
More likely to change

Claire Le Goues, UVA

fault-localized regions.

= Results: repaired 15 legacy C programs
(> two million LOC); < 5 minutes
(average); error types: buffer overruns,
denial of service, format string
vulnerabilities, infinite loops...

= Highlights analogy between software and
complex evolving systems.

« Assumes redundancy of functionality even in
software executing in isolation.

« Many bugs repaired by copying code between
locations, resembling biological evolution.

Claire Le Goues, UVA

