
The Case for
Software Evolution

Claire Le Goues*, Stephanie Forrest+, Wes Weimer*
*University of Virginia +University of New Mexico

11/7/10 Claire Le Goues, UVA 1

The current software
development

paradigm is broken.

11/7/10 Claire Le Goues, UVA 2

  Software has become too
complicated for humans to
understand.

  Maintenance = up to 90% of a
project’s cost, up to $60 billion in
the US annually.

We should treat software like
a complex, evolving system.

  Most aspects of a software system
change over its lifetime.

11/7/10 Claire Le Goues, UVA 3

  Human modifications resemble
evolutionary mechanisms.

This perspective challenges
several current research

assumptions.

11/7/10 Claire Le Goues, UVA 4

1. Soundness
  Complexity limits the feasibility, utility of

precise proofs of program properties.
•  Biological systems do not rely on a priori

correctness.

  Future directions: new definitions of
utility; program analysis features that
enable practical adaptation.

11/7/10 Claire Le Goues, UVA 5

  Without soundness, we need new program
analysis metrics and benchmarks.

2. Definition of acceptability

11/7/10 Claire Le Goues, UVA 6

  Future directions: test
suites (evolving),
continued execution,
heuristics.
•  Test case generation that

produces full test cases,
with expected output.

3. Separation of concerns
  Biological boundaries enforcing

modularity are much richer than
their computing equivalents.

  Future directions: relax hardware/
software abstraction to achieve robustness
in dynamic and energy-constrained
environments.

11/7/10 Claire Le Goues, UVA 7

4. Homogeneity
  Biological diversity is an important source

of robustness.
•  Protects against the spread of disease.
•  Provides alternative pathways to

maintain functionality.

  Future directions: research techniques
that account for and leverage diversity.

11/7/10 Claire Le Goues, UVA 8

Conclusions
  We should think of computational systems

as complex evolving systems.
  This could dramatically change software

development and maintenance.
•  May be able to revisit the dream of automatic

programming.
•  May enable theoretical analyses of how

software is likely to operate over long time
scales.

11/7/10 Claire Le Goues, UVA 9

Questions!

11/7/10 Claire Le Goues, UVA 10

Automatic error repair using
genetic programming (GP)

11/7/10 Claire Le Goues, UVA 11

11/7/10 Claire Le Goues, UVA 12

Delete or insert
statements (from
elsewhere in the
program).

More likely to change
fault-localized regions.

  Results: repaired 15 legacy C programs
(> two million LOC); < 5 minutes
(average); error types: buffer overruns,
denial of service, format string
vulnerabilities, infinite loops…

  Highlights analogy between software and
complex evolving systems.
•  Assumes redundancy of functionality even in

software executing in isolation.
•  Many bugs repaired by copying code between

locations, resembling biological evolution.

11/7/10 Claire Le Goues, UVA 13

