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ABSTRACT
Automated program repair can greatly relieve programmers from
the burden of manually fixing the ever increasing number of pro-
gramming mistakes. At the same time, achieving such a goal in-
volves solving technical challenges in scalability, patch quality,
and integration into developer workflows. This article presents an
overview of the state-of-the-art tools and techniques in automated
program repair. We also take a forward looking view of the area
by presenting emerging and potential use cases for program repair,
such as online programming education and patching of security
vulnerabilities.
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1 INTRODUCTION
Alex is a software developer, a recent hire at the company of her
dreams. She is finally ready to push a highly anticipated new feature
to the shared code repository, an important milestone in her career
as a developer. As is increasingly common in development practice,
this kind of push triggers myriads of tests that the code needs to
pass before becoming visible to everyone in the company. Alex has
heavily tested the new feature, and is confident that it will pass
all the tests automatically triggered by the push. Unfortunately,
Alex learns that build system rejected the commit. The continuous
integration system reports failed tests, associated with a software
package developed by a different team entirely. Alex now needs to
understand the problem and fix the feature manually.

What if, instead of simply informing Alex of the failing test, the
build system also suggested one or two possible patches for the
committed code? Although this general use case is still fictional, a
growing community of researchers is working on new techniques
for automated program repair that could make it a reality. A bibli-
ography of automated program repair research appears in [1].

In essence, automated repair techniques try to automatically
identify patches for a given bug1, which can then be applied with
1We use the colloquial term “bug” to refer to programming mistakes that result in
unintended runtime behavior.
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little, or possibly even without, human intervention. This type of
work is beginning to see adoption in certain, constrained, practical
domains. Static bug finding tools increasingly provide “quick fix”
suggestions to help developers address flagged bugs or bad code
patterns, and Facebook recently announced a tool that automati-
cally suggests fixes for bugs found via their automatic testing tool
for Android applications [2].

The problem of bugs motivates a broad array of work on auto-
matically identifying them. Advances in formal verification have
shown the promise of fully-assured software. However, the pace
and scale of modern software development often precludes the
application of such techniques from all but the most safety-critical
systems. Lighter-weight static approaches that rely most commonly
on syntactic pattern matching or less complex static analysis are
becoming increasingly popular as quality gates in many compa-
nies [3, 4]. Testing, at multiple levels of system abstraction, remains
the most common bug detection technique in practice.

While detecting bugs is a necessary step toward improving soft-
ware, it leaves the arguably harder task of fixing bugs unsolved.
In practice, program repair is challenging for several reasons. A
developer must at first understand the problem and localize its root
cause in the source code. Next, she must speculate about strategies
to possibly fix the problem. For some of these strategies, the devel-
oper will evaluate a potential patch, by applying it and evaluating
whether the associated test cases then pass; if not, she might use the
failing test cases to conduct additional debugging activities. Finally,
the developer must select a patch and apply it to code base. The
difficulty of all these tasks is compounded by the fact that complex
software projects tend to contain legacy code, code written by other
members of an organization, or even code written by third-parties.

The promise of automated program repair is in reducing the bur-
den of these tasks by suggesting likely correct patches for software
bugs. At a high level, such techniques take as input a program and
some specification of the correctness criteria that the fixed pro-
gram should meet. Most research techniques use test suites for this
purpose: one or more failing tests indicate a bug to be fixed, while
passing tests indicate behavior that should not change. The end
goal is a set of program changes (typically to source code) that leads
all tests to pass, fixing the bug without breaking other behavior.

The grand challenge in today’s research on automated program
repair is the problem of weak specifications. Since detailed formal
specifications of intended program behavior are typically unavail-
able, program repair is driven by weak correctness criteria, such as a
test-suite. As a result, the generated patches may over-fit the given
test-suite, and may not generalize to tests outside the test-suite.

In the rest of the article, we discuss some of the technical develop-
ments in automated program repair, including an illustration of the
over-fitting problem. We start by sketching some of the use-cases
of automated program repair.
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2 USE CASES
This section discusses four practical use cases of automated repair,
and reports initial experience based on current repair techniques.

2.1 Fixing Bugs throughout Development
Existing continuous integration (CI) pipelines, such as Jenkins,
are an important stepping stone for integrating repair into the
development process. By regularly building, testing, and deploying a
code base, CI provides the prerequisites for repair tools that use test
suites as correctness specifications. Repair can become an activity
in CI systems that suggests patches in response to regression test
failures, such as for Alex, our hypothetical programmer.

Are we there yet? Existing techniques for automated repair of
correctness bugs are typically evaluated for effectiveness using
bugs taken from open source projects. Because many techniques
require input tests to trigger the bug under repair and to evaluate
the technique, such programs and bugs must be associated with
one or more failing test cases. These bugs are typically collected
systematically by going back in time through code histories to
identify bug-fixing commits and the regression tests associated with
them. Open source projects whose bugs have been studied in this
way include popular Java projects, e.g., various Apache libraries,
Log4J, and the Rhino JavaScript interpreter, as well as popular
C projects, e.g., the PHP and Python interpreters, the Wireshark
network protocol analyzer, and the libtiff library.

Recently, the Repairnator project [5] has presented a bot which
monitors for software errors, and automatically find fixes using
repair tools. Another recent work from Facebook [2] describes ex-
periences in integrating repair as part of continuous integration: a
repair tool monitors test failures, reproduces them and automati-
cally looks for patches. Once patches are found they are presented
to the developers for validation. Currently the effort focuses on au-
tomatically repairing crashes in Android apps, however the project
plan is to extend the work to general purpose repair.

2.2 Repairing Security Vulnerabilities
Many security vulnerabilities are exploitable memory errors or pro-
gramming errors, and hence a relevant target for automated repair.
Key software including popular libraries processing file formats,
or operating system utilities are regularly and rigorously checked
for vulnerabilities in response to frequent updates, using grey-box
fuzz testing tools, such as American Fuzzy Lop (AFL2). Microsoft
recently announced the Springfield project; Google similarly an-
nounced the OSS-Fuzz project. Such continuous fuzzing work-flows
generate use cases for automated program repair. In particular, re-
pair tools can receive tests produced by grey-box fuzz testing tools
like AFL.

Are we there yet? Existing repair techniques are effective at
fixing certain classes of security vulnerabilities, specifically inte-
ger and buffer overflows. An empirical study conducted on OSS
Fuzz subjects3 shows that integer overflow errors are amenable to
one-line patches, which are easily produced by repair tools. For
example, these changes add explicit casts of variables or constants,
modify conditional checks to prevent overflows, or change type

2http://lcamtuf.coredump.cx/afl/
3https://github.com/google/oss-fuzz

declarations. Existing repair tools [6] have also been shown to
automatically produce patches for the infamous Heartbleed vulner-
ability:

if (hbtype == TLS1_HB_REQUEST
/* the following check being added is the fix */
&& payload + 18 < s->s3->rrec.length) {

...
memcpy(bp, pl, payload);
...

}

It is functionally equivalent to the developer-provided patch:

/* the following check being added is the fix */
if (1 + 2 + payload + 16 > s->s3->rrec.length) return 0;
...
if (hbtype == TLS1_HB_REQUEST) {

...
}

2.3 Intelligent Tutoring
The computer programming learning community is growing rapidly.
This growth has increasingly led to large groups of potential learn-
ers, with often inadequate teaching support. Automated repair can
serve as a key component of intelligent tutoring systems that pro-
vide hints to learners for solving programming assignments and
that automate the grading of students’ programming assignments
by comparing them with a model solution.

Arewe there yet?While repair-based intelligent tutoring remains
an open challenge for now, initial evidence on using program re-
pair like processes for providing feedback to students [7] or for
automatic grading of student assignments [8] have been obtained.
Automated assignment grading can benefit from computation of
the “semantic distance” between a student’s buggy solution and
an instructor’s model solution. An important challenge for the fu-
ture is that programming education requires nuanced changes to
today’s program repair work-flow, since teaching is primarily fo-
cused on guiding the students to a solution, rather than repairing
their broken solution.

2.4 Self-Healing of Performance Bottlenecks
With the emergence of a wide variety of Internet-of-things (IoT)
software for smart devices, drones, and other cyber-physical or
autonomous systems, there is an increasing need for online pro-
gram repair, especially for non-functional properties like energy
consumption. Consider a drone used for disaster recovery, such
as flood or fire control. The drone software may encounter unex-
pected or perilous inputs simply by virtue of being faced with an
unforeseen physical environment, which may drain the device’s
battery. There exists a need for online self-healing of the drone
software. Automated repair targeted at non-functional issues, such
as performance bottlenecks, can provide such self-healing abilities.

Are we there yet? Current repair techniques for non-functional
properties have shown their effectiveness in improving real-world
software. Consider two examples of performance-related repair
tools. First, the MemoizeIt tool [9] suggests code that performs
application-level caching, which allows programs to avoid unnec-
essarily repeated computations. Second, the Caramel tool [10] has

https://github.com/google/oss-fuzz
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1 int triangle(int a, int b, int c){
2 if (a <= 0 || b <= 0 || c <= 0)
3 return INVALID;
4 if (a == b && b == c)
5 return EQUILATERAL;
6 if (a == b || b != c) // bug!
7 return ISOSCELES;
8 return SCALENE;
9 }

Figure 1: Simple example for categorizing triangles.

Test-id a b c Expected output Pass/Fail

1 -1 -1 -1 INVALID Pass
2 1 1 1 EQUILATERAL Pass
3 2 2 3 ISOSCELES Pass
4 3 2 2 ISOSCELES Fail
5 2 3 2 ISOSCELES Fail
6 2 3 4 SCALENE Fail

Figure 2: Test suite for the function in Figure 1.

suggested patches for a total of 150 previously unknown perfor-
mance issues in widely used Java and C/C++ programs, such as
Lucene, Chromium, and MySQL, that are now fixed based on the
suggested repairs. While these examples are encouraging, the ques-
tion of how to apply non-functional repair for fully automated
self-healing remains open.

3 SIMPLE EXAMPLE
We now describe a simple example that we will use to illustrate
the various state-of-the-art techniques in program repair. The ex-
ample is selected for didactic purposes rather than to illustrate all
the capabilities of repair techniques. Today’s techniques apply to
significantly more complex programs, as we describe in Section 2.

Consider a function that categorizes a given triangle as scalene,
isosceles, or equilateral (Figure 1). From the definition of isosceles
triangles learned in middle school, we can see that the condition in
line 6 should be rectified to
(a == b || b == c || a == c)

This modification is non-trivial; it goes beyond simply mutating
one operator in the condition.

The test suite in Figure 2 captures the various triangle categories
considered by the function: INVALID, EQUILATERAL, ISOSCELES
and SCALENE. Because the code contains a bug, several of the
tests fail. The goal of automated program repair is to take a buggy
program and a test suite, such as these, and produce a patch that
fixes the program. The test suite provides the correctness criterion
in this case, guiding the repair toward a valid patch. In general,
there may exist any number of patches for any particular bug, and
even humans can find different patches for real-world bugs.

At a high level, the program repair problem can be seen as fol-
lows: Given a buggy program P, and a test suite T such that P fails
one or more tests in T, find a “small” modification of P such that the

modified program P’ passes T. The term “small” simply refers to
the fact that developers generally prefer a simpler patch over a
complicated one. Some techniques even try to find a minimal patch.
Others tradeoff patch size with other goals, such as finding a patch
efficiently. A particular risk in automated repair is a “patch” that
causes the provided test cases to pass but that does not generalize
to the complete, typically unavailable, specification. That is, the
patch produced by an automated repair method can overfit the test
data. An extreme case of an overfitted repair for the tests in Figure 2
is the following:
if (a==-1 && b==-1 && c==-1)

return INVALID;
if (a==1 && b==1 && c==1)

return EQUILATERAL;
if (a==2 && b==2 && c==3)

return ISOSCELES;
...

Of course, such a “repaired" program is not useful since it does
not pass any tests outside the provided test suite. This example is
deliberately extreme. More commonly, patches produced by current
repair techniques tend to overfit the provided test suite by disabling
(or deleting) under-tested functionality [11].

4 STATE-OF-THE-ART
Automatically repairing a bug involves (implicitly) searching over
a space of changes to the input source code. Techniques for con-
structing such patches can be divided into broad categories, based
on what types of patches are constructed, and how the search is
conducted. Figure 3 gives an overview of the techniques. The inputs
to these techniques are a buggy program and a correctness crite-
rion (the correctness criterion is often given as a test-suite). Most
techniques start with a common preprocessing step that identifies
those code locations that are likely to be buggy. Such a fault local-
ization procedure, e.g., [12], provides a ranking of code locations
that indicates their potential buggy-ness. At a high level, there are
two main approaches, heuristic repair and constraint-based repair.
These techniques can sometimes enhanced by machine learning,
which we call learning-aided repair.

4.1 Heuristic Repair
Heuristic search methods, shown at the left of Figure 3 employ a
generate-and-test methodology, constructing and iterating over a
search space of syntactic program modifications. These techniques
can be explained schematically as follows.

for cand ∈ SearchSpace do
validate cand // break if successful

done
with SearchSpace denoting the set of considered modifications

of the program. Validation involves calculating the number of tests
that pass when a suggested patch has been applied. This can amount
to a fitness function evaluation in genetic programming or other
stochastic search methods.

Heuristic repair operates by generating patches that transform
the program Abstract Syntax Tree (AST). An AST is a tree-based
representation of program source code that captures important
program constructs, while abstracting away syntactic details like
parentheses or semicolons. Given fault localization information that
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Figure 3: Overview of repair techniques.

pinpoints code locations in the program that are the most likely
to be buggy, syntactic techniques render the search tractable by
making choices along one of three axes which are described next:
mutation selection, test execution, and the traversal strategy.

Mutation selection. Due to the combinatorial explosion of pos-
sible mutations, the number of program variants that can be gen-
erated and compiled is typically very large. Techniques thus must
limit the type and variety of edits considered for a repair candidate.
This in turn defines the search space, with which search-based
repair algorithms have great flexibility. However, this flexibility
comes at a risk: If the search space is too small, the desired repair
may not even be in the search space. For our triangle example
(Figure 1), recall that the most natural patch replaces line 6 with
(a == b || b == c || a == c). If we only consider mutations that
modify binary operators, the single-edit search space of the repair
algorithm will not contain the developer-provided repair, which
requires augmenting the branch condition with new conditions.
On the other hand, if the search space is too large, the search can
become intractable, such that the repair may not be found by the
algorithm in a reasonable amount of time.

To address this issue, some techniques limit edits to only deletion,
insertion, or replacement of code at the statement- or block-level.
For code insertion or replacement, a common approach is to pull
code from elsewhere in the same program or module, following the
plastic surgery hypothesis (that correct code can be imported from
elsewhere in the same program) [13] or the competent programmer
hypothesis (that programmers are mostly competent, and while
they may make a mistake in one portion of a program, they are
likely to have programmed similar logic correctly, elsewhere). Such
a technique would therefore only consider moving entire blocks
or lines of code around, e.g., an entire if condition semantically
similar to the one shown in Figure 1. This can often work by virtue
of the fact that source code is repetitive [14].

Other techniques have benefited from using more expressive
transformation templates, such as guiding a de-reference operation
with a null-pointer check. Such transformation templates trade off

repair space size for readability and “naturalness” of the resulting
patches. Moving from statement-level edits to expression-level edits
increases the search space, with the amount of increase depending
on the transformation templates used to construct the search space.

However, of course, even if the search space is large, the muta-
tion operators may not support the behavioral change needed by
the program, or may affect the desired change in ways different
from what a human might propose. A technique that may modify
operators or insert conditions (copied from elsewhere in the pro-
gram) would still struggle on this small program, since (a == c)
never appears verbatim in our example. Such a lack of correct code
fragments can result in degenerate behavior on smaller programs
that provide little repair material. It also motivates research in in-
telligently augmenting the search space, e.g., by considering past
versions of a program.

Test execution. Repair candidates are evaluated by running the
modified program on the provided set of test cases. Test execution
is typically the most expensive step, as test suites can be large and
techniques may need to rerun them many times. Various strategies
have been proposed to reduce this cost, including test suite selection
and prioritization. Search strategies that do not require a fitness
function to guide evolution, e.g., based on random or deterministic
search, can reduce the cost of testing by simply failing early (at the
first test failure). Moreover, such techniques may run the test cases
in a heuristic order designed to maximize the chance that, if a test
case is going to fail, it is run early in the validation process.

Traversal strategy. Finally, techniques vary in how they choose
which patches to explore, and in what order. GenProg [15], an early
technique proposed in this domain, uses a genetic programming
heuristic that evolves program patches towards a solution. This
approach uses a fitness function based on the number of test cases
passed by a patched program. Subsequent techniques like PAR [16]
have followed, varying in the mutation operators (PAR) or the fit-
ness function. Other techniques simply sample randomly typically
restricting themselves to single-edit patches [17], or in a heuristic,
deterministic order as in GenProg AE [18].
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4.2 Constraint-based Repair
In contrast to heuristic repair techniques, constraint-based tech-
niques proceed by constructing a repair constraint that the patched
code should satisfy, as illustrated in Figure 3. The patch code to
be generated is treated as a function to be synthesized. Symbolic
execution or other approaches extract properties about the function
to be synthesized; these properties constitute the repair constraint.
Solutions to the repair constraint can be obtained by constraint
solving or other search techniques. In these approaches, formu-
lation of the repair constraint is the key, not the mechanism for
solving it. This class of techniques can be captured via the following
schematic:

for test t ∈ test-suite T
compute repair constraintψt

synthesize e as solution for
∧
t ψt

In this case, T is the test-suite used as the correctness criterion
to guide repair. The constraintψt will be computed via a symbolic
execution [19] of the path traversed by test t ∈ T . The constraint
ψt is often of the form

ψt ≡ πt ∧ output = expected

where πt is the path condition of the path traversed by test t , output
is the symbolic expression capturing the output variable in the
execution of t and expected captures the oracle or expectation. The
path condition of a program path is a formula which is true for
those inputs which traverse the path [19].

Computing repair constraints and angelix values. To illustrate
constraint-based repair, reconsider our running example from Sec-
tion 3. SemFix [20], which is representative for constraint-based
techniques, substitutes the faulty condition in line 6 with an ab-
stract function f (a,b, c) on the live variables. In this example, f is a
predicate that takes the integer values a,b, c and returns true/false.
Then, the technique symbolically executes the tests in the given
test-suite to infer properties about the unknown function f . These
properties are crucial for synthesizing an appropriate f that can
pass all the given test cases.

The first two tests in our test suite do not even reach line 6.
Hence, SemFix will not infer any property about the function f
from them. From the last four tests, it can infer the repair constraint

f (2, 2, 3) ∧ f (3, 2, 2) ∧ f (2, 3, 2) ∧ ¬f (2, 3, 4)

This is because analysis of the program has revealed that for input
exercising line 6 if f is true, the program returns ISOSCELES and
otherwise SCALENE.

Inferring detailed constraint specifications can be difficult, some-
times posing significant scalability issues. This motivates more
efficient inference of value-based specifications [6]. In particular,
angelic values are inferred for patch locations, where an angelic
value for a fix location is one that makes a failing test case pass.
Once (collections of) angelic values are identified for each failing
test, program synthesis can then be employed to generate patch
code meeting such a value-based specification. This is the philos-
ophy embodied in the Angelix tool [6] where angelic values are
obtained via symbolic execution (instead of producing repair spec-
ifications in the form of SMT constraints via symbolic execution
directly). This way of dividing the repair task into (a) angelic value

determination, and (b) patch code generation to meet angelic values,
is symptomatic of semantic repair approaches.

Instead of obtaining angelic values by symbolic execution and
constraint solving, they may also be obtained by search, particu-
larly for conditional statements. This is because each occurrence of
a conditional statement has only two possible return values: true
and false. Techniques that work on enumerating possible angelic
values without adopting symbolic execution [21, 22] typically try
to repair conditional statements exclusively, where the angelic val-
ues are exhaustively enumerated until all failing test cases pass.
Such techniques adopt the work-flow of semantic repair techniques
(specification inference followed by patch generation), with an enu-
meration step fully or partially replacing symbolic program analysis.
Symbolic analysis based approaches such as [6] on the other hand,
avoid exhaustive enumeration of possible angelic values.

Solving constraints to find a patch. Once repair constraints or
angelic value(s) of a statement to be fixed are obtained, these tech-
niques need to generate a patch to realize the angelic value. Finding
a solution to the repair constraint yields a definition of the abstract
function f , which corresponds to the patched code. This is often
achieved by either search or constraint solving, where the opera-
tors allowed to appear in the yet-to-be synthesized function f are
restricted. In the above example, if we restrict the operators allowed
to appear in f to be relational operators most search or solving
techniques will find the expression a == b || b == c || a == c.
Efficient program synthesis techniques (see [23] for an exposition
of some recent advances in program synthesis) are often used to
construct the function f .

4.3 Learning-based Repair
Recent improvements in advanced machine learning, especially
deep learning, and the availability of large numbers of patches en-
able learning-based repair. Current approaches roughly fall into
three categories, which vary by the extent to which they exploit
learning during the repair process. One line of work [24] learns
from a corpus of code a model of correct code, which indicates how
likely a given piece of code is w.r.t. the code corpus. The approach
then uses this model to rank a set of candidates patches, to suggest
the most realistic patches first. Another line of work infers code
transformation templates from successful patches in commit histo-
ries [25, 26]. In particular, [25] infers AST-to-AST transformation
templates that summarize how patches modify buggy code into
correct code These transformation templates can then be used to
generate repair candidates.

The third line of work not only improves some part of the repair
process through learning, but trains models for end-to-end repair.
Such a model predicts for a given piece of buggy code the repaired
code, without relying on any other explicitly provided information.
In particular, in contrast to the repair techniques in earlier sec-
tions, such models do not rely on a test suite or a constraint solver.
DeepFix [27] trains a neural network that fixes compilation errors,
e.g., missing closing braces, incompatible operators, or missing dec-
larations. The approach uses a compiler as an oracle to validate
patch candidates before suggesting them to the user. Tufano et
al. [28] propose a model that predicts arbitrary fixes and train this
model with bug fixes extracted from version histories. According
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to their initial results, the model produces bug-fixing patches for
real defects in 9% of the cases. Both approaches abstract the code
before feeding it into the neural network. For the running example
in Figure 1, this abstraction would replace the application-specific
identifiers triangle and EQUILATERAL with generic placeholders,
such as VAR1 and VAR2. After this abstraction, both approaches use
an RNN-based sequence-to-sequence network that predicts how to
modify the abstracted code.

Given the increasing in interest in learning-based approaches
toward software engineering problems, we will likely see more
progress on learning-based repair in the coming years. Key chal-
lenges toward effective solutions include finding an appropriate
representation of source code changes and obtaining large amounts
of high-quality human patches as training data.

4.4 Repair of Non-Functional Properties
To help developers improve the software efficiency, several ap-
proaches identify optimization opportunities and make suggestions
on how to refactor the code to improve performance. These ap-
proaches typically focus on a particular kind of performance prob-
lem, e.g., unnecessary loop executions [10] or repeated executions
of the same computation [9]. Another line of work selects which
data structure, out of a given set of functionally equivalent data
structures, is most likely to provide the best performance for a
given program [29]. All these approaches suggest code changes but
leave the final decision whether to apply an optimization to the
developer.

To mitigate security threats, various techniques for repairing
programs at runtime have been proposed. These approaches auto-
matically rewrite code to add a runtime mechanism that enforces
some kind of security policy. For example, such repair techniques
can enforce control flow integrity [30], prevent code injections [31],
automatically insert sanitizers of untrusted input, or enforce auto-
matically inferred safety properties [32].

We note that existing techniques to repair non-functional prop-
erties typically focus on a particular kind of problem, e.g., a kind of
performance anti-pattern or attack. This distinguishes them from
the core repair literature for fixing correctness bugs, which typically
aim at fixing a larger set of errors.

5 PERSPECTIVES AND CHALLENGES
Despite tremendous advances in program repair during the last
decade, there remain various open challenges to be tackled by future
work. We identify three core challenges: increasing and ensuring
the quality of repairs, extending the scope of problems addressed
by repair, and integrating repair into the development process.

5.1 Quality
The quality challenge is about increasing the chance that an au-
tomatically identified repair provides a correct fix that is easy to
maintain in the long term. Addressing this challenge is perhaps the
most important step toward real-life adoption of program repair.

Measures of Correctness. An important aspect of fix quality is
whether the fix actually corrects the bug. In practice, program
repair relies on measures of correctness. Finding such a measure
is a difficult and unsolved problem, which applies both to patches

produced by humans and by machines. To date, researchers have
assessed quality using human judgment, crowdsourced evaluations,
comparison to developer patches of historical bugs, or patched
program performance on indicative program workloads or held-out
test cases. The recent work of [33] provides a novel outlook for
filtering patches based on the behavior of the patched program
vis-a-vis the original program on passing and failing tests.

Alternative Oracles. The bulk of the existing literature focuses
on test-based repair where the correctness criteria is given as a test
suite. Richer correctness properties, e.g., assertions or contracts, can
be used to guide repair, when available [34]. Other approaches con-
sider alternative oracles, such as potential invariants inferred from
dynamic executions [32]. Such approaches can follow the “bugs
as deviant behavior" philosophy, where deviations of an execution
from “normal" executions are observed and avoided. In particular,
[35] provides an overview of various (partial) oracles that can be
used for repair.

Correctness Guarantees. Few of today’s repair techniques provide
any guarantees about the correctness of produced patches, which
can hinder the application of automated repair, especially to safety-
critical software. If correctness guarantees needed are available
as properties, such as pre-conditions, post-conditions and object
invariants, these can be used to guide program repair. The work
of [36] reports such an effort where repair attempts to increase
the number of property preserving executions, while reducing the
number of violating executions. However, such formal techniques
are contingent on the properties to drive the repair being available.

Maintainability. Once a correct fix has been detected and applied
to the code base, the fixed code should be as easy to maintain as a
human fix. Initial work in this domain has investigated the effect
that automatically-generated patches impact human maintenance
behavior [37]. More study is needed to develop a foundational
understanding of change quality, especially with respect to the
human developers who will interact with a modified system.

A promising avenue for tackling the quality challenge is by
leveraging information available from other development artifacts,
including documentation or formal specifications, language spec-
ifications and type systems, or source control histories of either
the program under repair or of the broad corpora of freely avail-
able open-source software. Such additional information can reduce
the repair search space by imposing new constraints on potential
program modifications (e.g., as suggested by a type system) and in-
crease the probability that the produced patch is human-acceptable.

5.2 Scope
The scope challenge is about further extending the kinds of bugs
and programs to which automated repair applies.

General-purpose repair. Research in program analysis has long
focused on special-purpose repair tools for specific kind of errors,
such as buffer overflow errors [32], or bugs in domain-specific
languages [38]. More recent work, discussed in Section 4, focuses on
general-purpose repair tools, which do not make any assumptions
about the kind of bugs under consideration. While automatically
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fixing all bugs seems out of reach in the foreseeable future, targeting
a broad set of bugs remains on important challenge.

Complex programs and patches. Many of the key innovations in
the initial research in program repair concerned the scalability of
techniques to complex programs. For example, search-based tech-
niques moved from reasoning over populations of program ASTs
to populations of small edit programs (the patches themselves)
and developed other techniques to effectively constrain the search
space. Constraint-based repair strategies have moved from reason-
ing about the semantics of entire methods to only reasoning about
the desired change in behavior. These efforts enable scaling to pro-
grams of significant size, and multi-line repairs [6]. We anticipate
that scalability will periodically return to the fore as program repair
techniques engage in more complex reasoning. We emphasize here
that program repair techniques should remain scalable with respect
to large programs as well as large search spaces (complex changes).

5.3 Development Process
The final challenge is about integrating repair tools into the devel-
opment process.

Integration with bug detection. Bug detection is the natural step
preceding program repair. It is possible to fuse debugging and repair
into one step, by viewing repair as the minimal change which
makes the program pass the given tests. We envision future work
integrating repair with bug detection techniques, such as static
analysis tools. Doing so may enable repair techniques to obtain
additional information about possible repairs from static analyses,
in addition to the test cases used nowadays. As a first step in this
direction, a static analysis infrastructure used at Google suggests
fixes for a subset of its warnings [3]. A promising future direction
here could be to extend static analysis tools for generating dynamic
witnesses or scenarios of undesirable behavior.

IDE integration. Most of today’s repair tools are research pro-
totypes. Bringing these tools to the fingertips of developers in a
user-friendly fashion will require efforts toward integrating repair
into Integrated Development Environments (IDEs). For example,
an IDE-integrated repair tool could respond to either failed unit
or system tests or developer prompting. To the best of our knowl-
edge, this application has not yet been widely explored. Suitably
interactive response times are a precondition for such an approach.
This research direction will benefit from interaction with experts
in developer tooling and human-computer interaction, to ensure
that tools are designed and evaluated effectively.

Interactivity. As program repair gets integrated into develop-
ment environments, interacting with the developer during repair is
important.While the focus in the past decade has been on fully auto-
mated repair, putting the developer back into the loop is necessary,
in particular, due to the weak specifications (test suites) often used
to guide program repair. User interactivity may be needed to yield
expected outputs of additional test inputs which are generated to
strengthen the test-suite driving repair [39]. It is of course possible
to filter plausible but possibly incorrect patches by, e.g., favoring
smaller patches or favoring patches “similar” to human patches.

Nevertheless, the developer still needs to explore the remaining,
large set of patch suggestions.

Explaining repairs. A strongly related problem is to explain repair
suggestions. One idea worth pursuing is to compute and present
the correlation of patches based on program dependencies and
other semantic features, which allow the developer to loosely group
together plausible patches. Explaining repairs is needed particularly
in its application to programming education [8]. Instead of merely
fixing a students’ incorrect program to themodel correct program, it
is useful for the repair tool to generate hints of what is missing in the
students’ repair. Such hints may take the form of logical formulae
capturing the effect of repairs, which are gleaned from constraint
based repair tools; these hints may be presented in natural language,
instead of logic, for easy comprehension by the learners.

6 CONCLUDING REMARKS
Automated program repair remains an enticing yet achievable pos-
sibility, which can improve program quality while improving pro-
grammers’ development experience.

Technically speaking, automated repair involves challenges in
defining, navigating and prioritizing the space of patches. The field
thus benefits from past lessons learned in search space definition
and navigation in software testing, as embodied by the vast litera-
ture in test selection and prioritization. The GenProg tool [15] is a
fitting example of how genetic search, which has been useful for
testing, can be successfully adapted for repair. At the same time,
automated repair comes with new challenges, because it may gen-
erate patches that overfit the given tests. This is a manifestation
of tests being incomplete correctness specifications. Thus there
is a need for inferring specifications to guide repair, possibly by
program analysis. The Semfix and Angelix tools [6, 20] are fitting
examples of how the repair problem can be envisioned as one of
inferring a repair constraint, and they have shown the scalability
of such constraint-based techniques.

Conceptually speaking, automated program repair closes the
gap between the huge manual effort spent today in writing correct
programs, and the ultimate dream of generating programs automat-
ically via learning approaches. Given the challenges of generating
multi-line program fixes in program repair, we can thus imagine
the difficulty of generating explainable programs automatically.

Pragmatically speaking, automated program repair also makes
us keenly aware of the challenges in managing changes in software
engineering projects, and the need for automation in this arena.
Today, manual debugging and maintenance often takes up 80% of
the resources in a software project, prompting practitioners to long
declare a legacy crisis [40]. In future program repair can provide
tool support by repairing bugs from complex changes in software
projects. This can perhaps resolve the dilemma faced by developers
when managing complex program changes: “Our dilemma is that
we hate change and love it at the same time; what we really want
is for things to remain the same but get better."4
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