
A Learning-to-Rank Based Fault Localization Approach
using Likely Invariants

Tien-Duy B. Le1, David Lo1, Claire Le Goues2, and Lars Grunske3

1School of Information Systems, Singapore Management University, Singapore
2School of Computer Science, Carnegie Mellon University, USA

3Humboldt University of Berlin, Germany
{btdle.2012,davidlo}@smu.edu.sg, clegoues@cs.cmu.edu, grunske@informatik.hu-berlin.de

ABSTRACT
Debugging is a costly process that consumes much devel-
oper time and energy. To help reduce debugging effort,
many studies have proposed various fault localization
approaches. These approaches take as input a set of test
cases (some failing, some passing) and produce a ranked
list of program elements that are likely to be the root
cause of the failures (i.e., failing test cases). In this work,
we propose Savant, a new fault localization approach that
employs a learning-to-rank strategy, using likely invariant
diffs and suspiciousness scores as features, to rank methods
based on their likelihood of being a root cause of a failure.
Savant has four steps: method clustering and test case
selection, invariant mining, feature extraction, and method
ranking. At the end of these four steps, Savant produces
a short ranked list of potentially buggy methods. We have
evaluated Savant on 357 real-life bugs from 5 programs
from the Defects4J benchmark. We find that, on average,
Savant can identify the correct buggy method for 63.03,
101.72, and 122 bugs at the top 1, 3, and 5 positions in the
produced ranked lists. We have compared Savant against
several state-of-the-art spectrum-based fault localization
baselines. We show that Savant can successfully locate
57.73%, 56.69%, and 43.13% more bugs at top 1, top 3,
and top 5 positions than the best performing baseline,
respectively.

CCS Concepts: Software and its engineering → Software
testing and debugging

Keywords: Learning to Rank, Program Invariants, Auto-
mated Debugging

1. INTRODUCTION
Software systems are often plagued with bugs that com-

promise system reliability, usability, and security. One of the
main tasks involved in fixing such bugs is identifying the
associated buggy program elements. Developers can then
study the implicated program elements and their context,

and make necessary modifications to resolve the bug. This
is a time consuming and expensive process. Many real-world
projects receive a large number of bug reports daily [6], and
addressing them requires considerable time and effort. De-
bugging can contribute up to 80% of the total software cost
for some projects [50]. Thus, there is a pressing need for au-
tomated techniques that help developers debug. This prob-
lem has motivated considerable work proposing automated
debugging solutions for a variety of scenarios, e.g., [4, 7, 8,
14, 21, 30, 32, 36, 44, 48, 53, 54, 55, 62, 63, 64].

In addition to potentially providing direct developer sup-
port, automated debugging approaches are also used by re-
cent work in automated program repair (including [28, 40,
35], and many others). Such tools use automated debugging
approaches as a first step to identify likely faulty program
elements. These lists guide program repair tools to generate
program patches that lead previously-failing tests to pass.
The accuracy of automated debugging approaches therefore
plays an important role in the effectiveness of program re-
pair tools. Thus, there is a need to improve the effectiveness
of automated debugging tools further to support both de-
velopers and current program repair techniques.

In this work, we are particularly interested in a family of
automated debugging solutions that takes as input a set of
failing and passing test cases and then highlights the sus-
picious program elements that are likely responsible for the
failures (failing test cases), e.g., [4, 7, 8, 14, 21, 30, 32, 36,
53, 54, 55, 62, 63]. While these techniques have been shown
effective in many contexts, their effectiveness needs to be
further improved to localize more bugs more accurately.

We propose a novel technique, Savant, for effective au-
tomated fault localization. Savant uses a learning-to-rank
machine learning approach to identify buggy methods from
failures by analyzing both classic suspiciousness scores and
inferred likely invariants observed on passing and failing test
cases. Savant is built on three high-level intuitions. First,
program elements which follow different invariants when run
in failing versus correct executions are suspicious. Second,
such program elements are even more suspicious if they are
assigned higher suspiciousness scores computed by existing
spectrum-based fault localization (SBFL) formulas [5, 21,
57, 58, 60]. Third, some invariant differences are likely to
be more suspicious than others. For example, the violation
of a“non-zero” invariant (e.g., x 6= 0 or x 6= null) in the fail-
ing execution may indicate a division by zero or null pointer
dereference, and is thus likely to be more suspicious than a
violation of a “linear binary” invariant (e.g., x + y + 3 = 0),
due to the prevalence of null pointer dereference errors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

ISSTA’16, July 18–20, 2016, Saarbrücken, Germany
c© 2016 ACM. 978-1-4503-4390-9/16/07...$15.00

http://dx.doi.org/10.1145/2931037.2931049

177

There exists natural variations in existing invariant learn-
ing techniques when applied to different executions. The
challenge is thus to distinguish between invariant differences
that arise from natural execution variation and those that
are truly indicative of buggy behavior. In the absence of a
clear a priori set of rules, we propose to learn the relative
importance of different invariant differences and suspicious-
ness scores from pre-existing fixed bugs, and use that learned
information to localize new bugs.

Savant is designed for efficiency and reliability, and em-
ploys a number of steps to both reduce runtime and make
informed recommendations based on the inferred invariants
and computed suspiciousness scores. Savant works at the
method-level granularity [26, 39, 42, 58] rather than file- [45,
64] or statement-level [57, 60]. Although localizing a bug to
the file-level is useful, files can be large, leaving consider-
able code for developers to filter down to the few lines that
contain a bug. For example, the faulty file corresponding to
Bug 383 in the Closure Compiler (see Figure 1) is 1,160 lines
of code in total. Localizing a bug to the line-level, on the
other hand, is ill-suited for multi-line bugs, which are com-
mon [37]. Furthermore, developers often lack “perfect bug
understanding” [41] and thus looking at a single line of code
does not always allow a developer to determine whether it
is truly buggy, nor to understand the bug well enough to fix
it. A method is not as big as a file, but often contains suf-
ficient context needed to help developers understand a bug.
Furthermore, Kochhar et al. reported that 51.81% of their
386 survey respondents chose method-level as the preferred
granularity for fault localization [24].

Savant consists of four steps: method clustering & test
case selection, invariant learning, feature extraction, and
method ranking. Unlike prior work, e.g., [4, 21, 36], Savant
does not use all available test cases to localize faults. In-
stead, for scalability, it selects a subset of test cases, includ-
ing both the failing tests and only those passing tests that
cover similar program elements. Next, it uses Daikon [17]
to learn likely invariants on the entry and exit of only those
methods that are executed by the failing executions. By
limiting the number of instrumented methods, Daikon com-
pletes its learning process much more quickly than it would
by default, especially for larger systems. For efficiency rea-
sons, we choose to kill Daikon if it does not complete its
processing within one minute. We run Daikon in several set-
tings: first, on traces collected from all executions; then only
on correct executions; and finally only on failing executions.
By diff-ing all pairs of resultant invariant sets, we identify
suspicious methods where invariants inferred from one set
of do not hold in another. Next, we convert the invariant
diffs into a set of features. We also use the suspiciousness
scores computed by several SBFL formulae for the suspi-
cious methods as features. All of the extracted features are
then provided as input to a learning-to-rank algorithm. The
learning-to-rank algorithm learns a ranking model based on
a training set of fixed bugs which differentiates invariant
differences of faulty from non-faulty methods. This ranking
model can then be used to rank suspicious methods for new
bugs based on their corresponding invariant differences.

We evaluate Savant on 357 bugs from 5 programs in the
Defects4J benchmark [22]. We compare Savant against sev-
eral state-of-the-art spectrum-based fault localization solu-
tions, as well as a solution that also uses invariants [43]. Out
of the 357 bugs, Savant successfully localizes 63.08, 101.72,

Table 1: Raw Statistic Description

Notation Description

nf (e)
Number of failing test cases that exe-
cute program element e

nf (ē)
Number of failing test cases that do not
execute program element e

ns(e)
Number of passing test cases that exe-
cute program element e

ns(ē)
Number of passing test cases that do
not execute program element e

nf Total number of failing test cases
ns Total number of passing test cases

and 122 buggy methods on average within the top 1 , top
3, and top 5 positions in the ranked lists that it generates,
respectively. Compared to the existing state-of-the-art , Sa-
vant successfully locates 57.73%, 56.69%, and 43.13% more
bugs at the top 1, top 3, and top 5 positions, respectively.

The contributions of our work are as follows:

1. A novel learning-to-rank solution that uses likely in-
variants and suspiciousness scores as features to rank
suspicious methods in a fault localization context.

2. A novel set of heuristics for method clustering and test
case selection for invariant inference on large programs
for fault localization. Our heuristics combine k-means
clustering and a greedy approach to tackle a known
NP-complete problem. Without these heuristics, it is
largely infeasible to extract interesting features from
the execution traces from thousands of test cases.

3. An evaluation showing that, on 357 bugs from 5 pro-
grams in the Defects4J benchmark, Savant substan-
tially outperforms many previous fault localization so-
lutions that also analyze test cases to produce a ranked
list of suspicious methods.

The remainder of this paper is structured as follows. Sec-
tion 2, presents background on fault localization, Daikon,
and learning-to-rank algorithms. Section 3 demonstrates a
motivating example. We elaborate the four steps of Savant
in Section 4. We describe our experimental setup and re-
sults in Section 5. We discuss related work in Section 6, and
conclude, mentioning future work, in Section 7.

2. PRELIMINARIES
In this section, we define the spectrum-based fault lo-

calization (SBFL) problem and present several state-of-the-
art approaches (Section 2.1) We then introduce Daikon, a
technique that mines likely invariants from program exe-
cutions (Section 2.2). Finally, we present learning-to-rank
algorithms (Section 2.3).

2.1 Spectrum-Based Fault Localization
The goal of spectrum-based fault localization (SBFL) is to

rank potentially faulty program elements based on observa-
tions of passing and failing test case execution. A common
intuition is that program elements executed more often by
failed test cases but never or rarely by passing test cases are
more likely to be faulty.

An SBFL algorithm therefore takes as input a faulty pro-
gram version and a set of failing and passing test cases.
Running these test cases on an instrumented version of the
faulty program produces program spectra corresponding to

178

a set of program elements executed by each of the test cases.
SBFL techniques then compute a set of statistics to charac-
terize each program element e that appears in a spectrum,
highlighted in Table 1. These statistics inform the compu-
tation of a suspiciousness score per program element; SBFL
techniques vary in the underlying formulae [56].

We now describe several of the state-of-the-art SBFL ap-
proaches proposed in the previous literature. We focus on
those to which we compare Savant in Section 5; We discuss
other related techniques in Section 6.

Xie et al. [56] theoretically analyze the manually-created
SBFL formulae used in previous studies to compute suspi-
ciousness scores and demonstrate that ER1 and ER5 are
the two best SBFL families. They are computed as follows:

ER1a(e) =

{
−1, if nf (e) < nf

ns − ns(e), if nf (e) = nf

ER1b(e) =nf (e)− ns(e)

ns(e) + ns(ē) + 1

ER5a(e) =nf (e)

ER5b(e) =
nf (e)

nf (e) + nf (ē) + ns(e) + ns(ē)

ER5c(e) =

{
0, if nf (e) < nf

1, if nf (e) = nf

Xie et al. [57] further analyze SBFL formulae generated
by running an automatic genetic programming (GP) algo-
rithm [60]. The best GP-generated SBFL formulae are:

GP02(e) =2× (nf (e) +
√
ns) +

√
ns(e)

GP03(e) =

√
|nf (e)2 −

√
ns(e)|

GP13(e) =nf (e)× (1 +
1

2× ns(e) + nf (e)
)

GP19(e) =nf (e)×
√
|ns(e)− nf (e) + nf − ns|

In addition to the above state-of-the-art SBFL formulae,
we also consider Ochiai [5]:

Ochiai(e) =
nf (e)√

nf (nf (e) + ns(e))

Xuan and Monperrus propose Multric, a compositional
SBFL technique that uses a learning-to-rank algorithm [58]
to combine the results of 25 previously-proposed SBFL for-
mulae into a model that produces a single ranked list of
potentially-buggy program elements. The 25 formulae are
used to compute suspiciousness scores of program elements
as usual; these scores are then treated as features input to
a learning-to-rank algorithm. Our approach, Savant, also
uses a learning-to-rank algorithm and includes suspicious-
ness scores as features, but we include a substantively dif-
ferent set of features extracted from invariant differences.
Importantly, Savant localizes root causes of bugs in suspi-
cious methods where invariant differences occur, rather than
in all methods, as Multric does.

Pytlik et al. propose Carrot, a SBFL technique that also
leverages likely invariants [43]. Carrot mines a set of likely
invariants from executions of successful test cases, and ob-
serves how the invariants change when executions of failed
test cases are incorporated. These differences indicate po-
tential bug locations. Savant also uses likely invariants to

identify fault locations. However, we use a much larger set of
invariatn types (that is, all invariants produced by Daikon,
rather than the six considered by Carrot), employ a method
clustering and test case selection heuristic for performance,
and use invariants and suspiciousness scores as features to
rank program elements.

2.2 Mining Likely Invariants
Daikon [16, 17] is a popular tool for mining likely invari-

ants that hold over a set of program executions at specific
program points, typically method entries and exits. It mon-
itors the values of variables at such program locations, and
matches them against a set of templates to create candidate
invariants. Daikon outputs those candidates that hold on all
or most of the executions. Daikon supports a wide variety of
invariants, from a large set of 311 templates [15]. Examples,
taken from Daikon online manual [1], include:

• LowerBound: x >= c, where c is a constant and x
is a long scalar.

• LinearBinary: ax+by+c = 0, given two long scalars
x and y.

• NonZero: x 6= 0 or x 6= null for long scalar integers
or pointers, respectively.

• EltwiseFloatGreaterEqual: Given a sequence of
double values, represents the invariant that adjacent
subsequent values are constrained by the ≥ relation.
Prints as “x[] sorted by >=.”

2.3 Learning-to-Rank
Learning-to-rank is a family of supervised machine learn-

ing techniques solves ranking problems in information re-
trieval [33]. There are two phases in learning to rank: a
learning, and a deployment phase. During the learning
phase, learning to rank techniques extract features from
training data which contain queries and documents as well
as their relevance labels. The output of the learning phase is
a ranking model that can predict relevance labels for docu-
ments with regard to corresponding queries. The goal of the
learning algorithm is to infer an optimal way to combine fea-
tures that minimizes the loss function; Each learning to rank
technique has a specific loss function and learning algorithm
to construct this model.

In the deployment phase, the learned ranking model re-
ceives new queries and documents, and returns a ranked list
of documents sorted by their computed relevance to the in-
put queries. There are three major approaches in learning
to rank [33]: pointwise, pairwise, and listwise. Each varies
in input, output, and loss functions. In our study, we use
rankSVM [29], a pairwise technique, for learning and rank-
ing suspicious program elements.

3. MOTIVATING EXAMPLE
We begin by introducing an example defect to motivate

our technique. Consider Bug 383 in the Closure Com-
piler’s bug database1, summarized in the top part of Fig-
ure 1. The bug is assigned a high priority: it causes an
issue in Internet Explorer 9 and jQuery.getScript. Ac-
cording to the developer patch (bottom of Figure 1), the
bug ultimately resides in the strEscape method in the
com.google.javascript.jscomp.CodeGenerator class. To
find this method, based on the report, the developer can

1https://goo.gl/YtW6Ux

179

https://goo.gl/YtW6Ux

Bug 383 (Priority: high)

Summary: \0 \x00 and \u0000 are translated to null character

Description:
What steps will reproduce the problem?
1. write script with string constant “\0” or “\x00” or “\u0000”

What is the expected output? What do you see instead?
I expected a string literal with “\0” (or something like that) and
instead get a string literal with three null character values.

Please provide any additional information below.
This is causing an issue with IE9 and jQuery.getScript. It causes
IE9 to interpret the null character as the end of the file instead
of a null character.
@@ -963,6 +963,7 @@ class CodeGenerator {

for (int i = 0; i < s.length(); i++) {
char c = s.charAt(i);
switch (c) {

+ case ’\{}0’: sb.append(”\{}\{}0”); break;
case ’\{}n’: sb.append(”\{}\{}n”); break;
case ’\{}r’: sb.append(”\{}\{}r”); break;

Figure 1: Bug Report (top) and developer patch
(bottom) for bug 383 of the Closure Compiler

create test cases to expose the undesired behavior (e.g.,
returning a null value for “\0”). With these test cases
and previously-created passing tests (of which Closure has
6,740), the developer could use existing spectrum-based
fault localization formulae to generate a ranked list of meth-
ods. The list could then be inspected, in order, until the root
cause of the bug is localized.

Generally, the ranked list contains the methods invoked by
failing test cases. However, the Closure Compiler is a large
project: This bug implicates 6,646 methods! Moreover, none
of ten state-of-the-art SBFL formulae (Section 2.1) localize
the actual faulty method within the top 10 of the produced
list. The two best-performing formulae for this defect (GP13
and GP19) rank the first faulty method at position #64.
Multric assigns the highest suspiciousness score to the faulty
method; however, there are more than 1000 methods sharing
this score. Existing SBFL approaches provide limited utility
for the developer in this case.

On the other hand, Savant first uses Daikon to infer invari-
ants from execution traces generated by both passing and
failing test cases. Daikon’s Invariant Diff utility on the in-
ferred invariant sets implicates 556 suspicious methods with
changes in learned invariants between passing versus failing
execution types. Assuming any one of these methods is in-
voked by the failing test cases, we have already reduced the
number of implicated methods from more than 6,000 to 556,
regardless of SBFL rank. However, this is still an intractably
large number. Therefore, we further rank the output using
a learning to rank model built on historical changes in in-
variants of previously fixed bugs. The model assigns a score
to each of the identified suspicious methods. We create a
ranked list of suspicious methods sorted by the computed
scores, and send to the developer for inspection.

Savant localizes the methods implicated in this example
within the top-3 program elements (Section 5), significantly
outperforming the best SBFL approaches.

4. PROPOSED APPROACH
An overview of Savant’s architecture is shown in Figure 2.

Savant works in two phases. In the training phase, Savant
learns a statistical model that ranks methods based on the

likelihood that they are the root cause of a particular fail-
ure, based on features drawn from execution behavior on
passing and failing test cases. This model is learned from
training data consisting of a set of previously-repaired bugs,
consisting of a buggy program version, passing and failing
test cases, and ground truth bug locations. The training
phase of Savant consists of four steps:

• Method Clustering and Test Case Selection (Sec-
tion 4.1): Savant first clusters methods executed by
failing test cases. For every cluster, Savant selects a
subset of particularly relevant passing and failing test
cases. This step thus outputs a set of method clus-
ters and their corresponding selected test cases. The
goal of this step is to limit the memory and runtime
cost during invariant mining, while still enabling the
inference of useful invariants.

• Invariant Mining (Section 4.2): Savant uses Daikon
to record and infer method invariants for each clus-
ter, based on program behavior on various sets of test
cases. This step produces sets of program invariants,
inferred from the execution of failing test cases, pass-
ing test cases, and their combination.

• Feature Extraction (Section 4.3): Savant uses the
Daikon’s Invariant Diff utility to identify differences
between method invariants inferred from the execution
behavior on different sets of test cases. For instance, if
invariant I holds over the set of passing test case execu-
tions, but not when the failing test cases are added, the
methods where invariant I differs are suspicious. For
methods whose invariant diffs are non-empty, Savant
runs SBFL formulae to obtain suspiciousness scores.
This produces a set of features per method for use as
input to a model learning procedure, corresponding to
either (1) the frequency of a type of invariant change
for the method, or (2) a suspiciousness score computed
by one of the SBFL formulae.

• Model Learning (Section 4.4): Savant takes the fea-
tures and the ground truth locations to build a ranking
model. This model is the overall output of the training
phase that is passed to the deployment phase.

In the deployment phase (also discussed in Section 4.4),
Savant takes as input a set of test cases (some failing, some
passing), and a buggy program version and then uses the
learned model to rank produce a ranked list of methods that
are likely responsible for the failing test cases.

4.1 Method Clustering & Test Case Selection
Savant must run the faulty program on passing and failing

tests to record execution traces for invariant inference. Both
trace collection and invariant mining can be very expensive,
and the number of instrumented methods and executed test
cases both contribute to the cost. For medium to large pro-
grams (e.g., Commons Math, Closure Compiler etc.), the
runtime cost of running Daikon to infer invariants for all
methods executed by all test cases is very high (i.e., Daikon
runs for many hours without producing results, or crashes
with an out-of-memory exception). At the same time, we
must collect sufficient data to support precise and useful in-
variant inference.

We resolve this tension via a set of novel heuristics for
method clustering and test case selection for invariant infer-
ence on large programs for the purpose of fault localization.
First, we exclude all methods not executed by any failing

180

Training

Deployment

Method Clustering

Test Case Selection

Invariant
Mining

Feature
Extraction

Model
Learning

Fixed Bugs

Method Clustering

Test Case Selection

Invariant
Mining

Feature
Extraction

Method
Ranking

New Bugs

Model

Method
List

Buggy
Version

Test
Cases

Ground
Truth

Legend

SBFL Formulae

Figure 2: Overview of Savant’s Architecture

Algorithm 1 Method Clustering & Test Case Selection

Input: I: all methods executed by unsuccessful test cases
Pi, Fi : passing and failing test cases, respectively
M : maximum cluster size
T : minimum acceptable coverage

Output: Clusters of methods and associated test suites

let Cs←reduce_size(kmeans(I, |I|
M

))
let Cr ← ∅
foreach cm ∈ Cs do

let P s
i ← coverage_sort(Pi, cm)

let Pc ← ∅
while ∃m ∈ c s.t. coverage(m,Pc) < M do

let t← pop(P s
i)

if t covers at least one method m ∈ c then
Pc ← Pc ∪ {t}

end

end
Cr ← Cr ∪ {cm, Pc}

end
return Cr

test cases. Second, we cluster methods by the passing test
cases that execute them, and record execution traces for each
cluster separately on all of the failing and then a selected
subset of the passing test cases. Considering all passing test
cases is unnecessarily costly, as many passing test cases are
irrelevant to particular sets of methods.

Algorithm 1 describes our clustering and test case selec-
tion heuristic. This heuristic represents each method via
a coverage vector describing all input passing test cases.
The value of a dimension is one if the method is covered
by the corresponding test case and zero otherwise. Savant
uses k-means clustering [20] to group similar vectors (i.e.,
methods). K-means takes as input a set of vectors V and a
fixed number of desired clusters k, and produces k clusters,
each containing an arbitrary number of methods. We set
k to ‖I‖/M , where I is the number of methods to cluster,
and M is the desired maximum cluster size. Because the
resulting clusters may contain more than M methods, we
heuristically split overlarge clusters into smaller groups no

larger than size M . We keep selecting M methods randomly
to create new groups until the cluster size is reduced to no
more than M .

Savant then selects a subset of passing test cases for each
cluster that covers its methods at least T times each. A per-
fect solution reduces to the NP-complete knapsack problem.
We take a computationally simpler greedy approach, which
suffices for our purpose. For each cluster, we sort passing
test cases in descending order by the number of methods
in the cluster that each test covers. We then greedily take
test cases from this list until all methods in the cluster are
covered at least by at least T test cases. Both M and T can
be tuned to fit experimental system capacity. Note that as
the number of failing test cases is usually significantly less
than the number of passing tests, we are still able to use
all failing test cases of the faulty program for each cluster.
The output of this step is the set of clusters Cr, eaching
containing methods, where for each method cluster there is
an associated subset Pc of passing test cases.

4.2 Invariant Mining
For each cluster produced in the preceding step, Sa-

vant traces execution information for each included method
across all failing test cases as well as the selected passing
test subset for that cluster. Savant collects execution infor-
mation separately for the methods in the cluster uses the
following three sets of test cases: Fi, Pc, and Fi ∪ Pc of
each method cluster c. For clarity, we refer subsequently to
the execution of the failing test cases on a cluster c as Fc,
but remind the reader that this involves running all failing
test cases on each cluster. This information is then input
to Daikon to infer invariants. We refer to the invariants
inferred by Daikon as inv(Fc), inv(Pc), and inv(Fc ∪ Pc),
respectively, and these sets of invariants form the output of
this step. Savant uses these sets to produce features for the
learning-to-rank model construction, discussed next.

4.3 Feature Extraction
Savant extracts two different types of features: invariant

changes features and suspiciousness scores features.

181

4.3.1 Invariant Change Features
For the first set of features, Savant uses Daikon’s Invari-

ant Diff tool to describe changes in invariant sets between
failing and passing program executions. In a nutshell, In-
variant Diff recognizes changes in method invariants inferred
from different sets of execution traces. The changes can con-
sist of a transformation of an invariant into another (e.g.,
OneOfString to SingleString, or NonZero to EqualZero), or
invariant removal or addition. Our overall insight is that
if an invariant I holds over successful test case executions
(i.e., I ∈ inv(Pc)), but not when the failing test cases are
added (i.e., I 6∈ inv(Fc ∪Pc)), the locations where invariant
I differs are suspicious. These suspicious locations are at
the entry and exit point of a method, suggesting the bug
lies within that method. Thus, Savant ultimately analyzes
and ranks only these suspicious methods, rather than all
methods covered by the failing test cases.

Savant uses Invariant Diff to perform three types of com-
parisons per cluster: inv(Pc) × inv(Fc ∪ Pc), inv(Fc) ×
inv(Pc), and inv(Fc) × inv(Fc ∪ Pc). We refer to the out-
put of Invariant Diff on these pairs as idiff(Pc, Fc ∪ Pc),
idiff(Fc, Pc), and idiff(Fc, Fc∪Pc), respectively. We then
convert these invariant changes to features. Feature f of
method m is a 3-tuple: f = [IA, IB , InvDiffAB]. IA is the
type of the source invariant inferred from the execution of
one set of test cases, IB is the type of the target invariant to
which IA is transformed, and which holds in the execution of
the other set of tests, and InvDiffAB indicates the Invari-
ant Diff’s output type from which the change was discov-
ered. We refer to IA and IB as the left-hand side (LHS) and
right-hand side (RHS) invariant, or the source and target in-
variants, interchangeably. The value of feature f is then the
frequency of the change between IA and IB in an InvDiffAB

comparison. Note that the values of IA and IB are the in-
variant types, rather than concrete invariants. Similarly, the
value of InvDiffAB in a feature’s 3-tuple is a label rather
the concrete value of Invariant Diff’s output. For example:
[OneOfString, SingleString, idiff(Fc, Pc)] can be read
as “A OneOfString invariant learned from execution of Fc

becomes a SingleString invariant in the execution of Pc.”
Daikon supports many different types of invariants,

including abstractions of concrete invariants. For example,
UnaryInvariant abstracts the LowerBound and NonZero
invariants. These invariant types create an inheritance hier-
archy rooted at daikon.inv.Invariant2. Thus, we enrich
the feature set by replacing the LHS and RHS invariants of a
feature with their abstract types to form a new feature. For
example, [UnaryInvariant,SingleString,idiff(Fc, Pc)]
abstracts [OneOfString, SingleString,
idiff(Fc, Pc)], and [UnaryInvariant, SingleFloat,
idiff(Fc, Fc ∪ Pc)] abstracts [LowerBoundFloat, Sin-
gleFloat, idiff(Fc, Fc ∪ Pc)].

Each such feature is a pair of invariants that reflects
an abstraction of a method’s behavioral changes, and col-
lecting many such features improves the chances that Sa-
vant successfully captures distinctive changes in the behav-
ior of faulty methods. Invariant has 311 subclasses, and
thus we have 311 × 311 = 96, 721 potential invariant pairs
(and thus overall features) across the three different Invari-
ant Diff runs i.e., idiff(Pc, Fc ∪ Pc), idiff(Fc, Pc), and
idiff(Fc, Fc ∪ Pc).

2http://goo.gl/EPwNhV

4.3.2 Suspiciousness Scores Features
It is possible for methods to share similar changes to their

invariants between sets of execution traces. These cases are
more difficult for ranking models to distinguish faulty and
non-faulty methods. Savant therefore also includes suspi-
ciousness scores output by spectrum-based fault localiza-
tion tools as additional features. For each method implicted
by changed invariants, Savant computes the suspiciousness
scores output by 10 state-of-the-art spectrum-based fault lo-
calization formulae (Section 2.1): ER1a, ER1b, ER5a, ER5b,
ER5c, GP02, and GP03, GP13, GP19 and Multric. We also
include the suspiciousness scores output by the 25 SBFL
formulae (including Ochiai) used by Multric, resulting in 35
features extracted from suspiciousness scores. These fea-
tures and invariant change features are then forwarded to
the model learning and method ranking steps.

4.4 Model Learning and Method Ranking

Feature Normalization. Before learning ranking models,
we normalize feature values to a range of [0, 1], as follows:

v′i =

0 if vi < mini

vi −mini

maxi−mini
if mini ≤ v ≤ maxi

1 if vi > maxi

(1)

where vi and v′i are the original and normalized values of the
ith feature of a suspicious method, mini and maxi are the
minimum and maximum values of the ith feature inferred
from the training data.

Model Learning and Method Ranking. In the model
learning step, Savant takes as input a set of fixed bugs, their
corresponding features, and their ground truth faulty meth-
ods. The methods modified by the developers to fix the bugs
provide this ground truth. For some bugs in the training set,
the difference between the invariants of their faulty methods
(for failed and passing test cases) can be empty. We exclude
such bugs from the training set. Figure 3 shows the format
of input data handled by the model learning step. Given
input data in this format, we use rankSVM [29], an off-the-
shelf learning-to-rank algorithm, to learn a statistical model
that ranks methods based on such features.

In the method ranking step, our approach takes the fea-
tures generated for a new bug as input to the learned model.
Finally, Savant outputs a ranked list produced by the learned
model to the developer for inspection.

5. EXPERIMENTS
In this section, we empirically evaluate Savant on a

dataset of real-world Java bugs. We discuss the dataset, ex-
perimental settings, and metrics in Section 5.1. Section 5.2
lists our research questions, followed by our findings in Sec-
tion 5.3. We discuss threats to validity in Section 5.4.

5.1 Experimental Settings

Dataset. Many fault localization approaches [21, 5, 36, 58]
are evaluated on artificial bugs (e.g., the SIR benchmark3,

3http://sir.unl.edu/php/previewfiles.php

182

http://goo.gl/EPwNhV
http://sir.unl.edu/php/previewfiles.php

Fa
ul
ty

Pr
og
ra
m

fe
at
ur
e 1

fe
at
ur
e 2

fe
at
ur
e 3

. .
.

la
be
l

Method #1 1 x
(1,1)
1 x

(1,1)
2 x

(1,1)
3 . . .

y(1,1)

Method #2 1 x
(1,2)
1 x

(1,2)
2 x

(1,2)
3 y(1,2)

. . .

Method #1 2 x
(2,1)
1 x

(2,1)
2 x

(2,1)
3 . . .

y(2,1)

Method #2 2 x
(2,2)
1 x

(2,2)
2 x

(2,2)
3 y(2,2)

. . .

. . .

Figure 3: Input Data Format for Model Learning.

x
(i,j)
k corresponds to the value of feature k for method

j in faulty program i. y(i,j) corresponds to the label
(i.e., faulty or non-faulty) of method j for faulty pro-
gram i.

Table 2: Dataset: The bolded components of names
denote a shorthand abbreviation. “# Bugs” repre-
sents the number of bugs in each project. “Avg.
KLOC”, “Avg. Tests”, and “Avg. Methods” cor-
respond to average size of the program, number of
test cases, and number of methods for each buggy
version of each program, respectively.

Avg.
Program # Bugs KLOC Tests Methods

JFreeChart 26 132.9 1,824.9 7,782.5
Closure Compiler 133 345.6 7,200.1 7,479.5
Commons Math 106 111.8 2,905.0 4,792.3
Joda-Time 27 110.8 3,924.6 4,083.5
Commons Lang 65 52.6 1,859.0 2,151.1

Steimann et al.’s benchmark [49]). However, it is unclear
whether such bugs capture true characteristics of real bugs
in real programs. Therefore, we evaluate Savant on 357 bugs
from 5 different software projects in the Defects4J bench-
mark [22], a database of real, isolated, reproducible software
faults from real-world open-source Java projects intended to
support controlled studies in software testing. The projects
include a large number of test cases, and there exists at
least one failing test case per bug. Our choice of evalua-
tion benchmark is inspired by influential previous work in
the field [61, 31] that evaluates proposed fault localization
approaches on real faulty programs. Table 2 describes the
bugs and projects in the evaluation benchmark.

Comparative techniques. We compare Savant against the
SBFL techniques highlighted in Section 2, as well as Car-
rot. We set the granularity of localized program entity to
method, to match Savant. We extend Carrot to use all
Daikon invariants and benefit from our test case selection
strategy. This is important for scalability: without selec-
tion, Carrot takes hours to complete. The extended Carrot
approach is referred to as Carrot+. In total, we compare
Savant against 12 baselines.

Cross Validation. We perform leave-one-out cross valida-
tion [19] across each of the five projects. Given a set of n
bugs, we divide the set into n groups, of which n−1 are used
for training and the remaining serves as the test set. We re-

peat the process n times, using a different group as the test
set. We report total results across the n iterations. Com-
pared to the standard 10-fold cross validation, leave-one-
out cross validation is beneficial for evaluating on smaller
datasets, as it provides more training data for each itera-
tion, at the expense of training and evaluation time. Savant
and Multric are the only two supervised learning techniques
we evaluate, and thus we only perform cross validation for
these two techniques, to mitigate the risk of overfitting. The
other techniques are unsupervised.

Savant’s Settings. For method clustering and test case se-
lection, we set the maximum cluster size M = 10 and min-
imum acceptable size T = 10. Savant uses Daikon (version
5.2.84) to infer invariants, scikit-learn5 0.17.0 to perform k-
means clustering, and rankSVM with linear kernel (version
1.956) from LIBSVM toolkit [13] for the learning to rank
task with default settings. We perform all experiments on
an Intel(R) Xeon E5-2667 2.9 GHz system with Linux 2.6.

Metrics. We use three metrics to evaluate fault localization
success:

acc@n counts the number of successfully localized bugs
within the top-n position of the resultant ranked lists. We
use absolute ranks rather than percentages, following find-
ings suggesting that programmers will only inspect the top
few positions in a ranked list of potentially buggy state-
ments [41]. We choose n ∈ {1, 3, 5}, computing acc@1,
acc@3, and acc@5 scores. Note that if two program ele-
ments (i.e., methods) share the same suspiciousness score,
we randomly break the tie. Higher is better for this metric.

wef@n approximates the wasted effort at n, or effort wasted
by a developer on non-faulty program elements before local-
izing the root cause a bug. wef@n is calculated by the total
number of non-faulty program elements in top-n positions
of ranked lists before reaching the first faulty program ele-
ment, or the nth program element in the ranked lists of all
bugs. We again choose n ∈ {1, 3, 5}. Smaller is better.

Mean Average Precision (MAP) evaluates ranking
methods in information retrieval; we use it to evaluate the
ranked list of suspicious elements produced by fault local-
ization techniques. MAP is calculated using the mean of the
average precision of all bugs, as follows:

AP =

M∑
i=1

P (i)× pos(i)

number of faulty methods

where i is a rank of the method at the ith position in the
ranked list, M is total number of methods in the ranked
list, and pos(i) is a boolean function indicating whether the
ith method is faulty. P (i) is the precision at ith position
starting from the beginning, defined as:

P (i) =
#faulty methods in the top i

i
.

In cross-validation, we compute the Mean Average Precision
(MAP) across all average precisions output across n itera-
tions. Higher is better. Note that MAP is a very strict
evaluation metric and its score is typically low (< 0.5) [26,

4http://plse.cs.washington.edu/daikon/download/
5http://scikit-learn.org/
6https://goo.gl/pHku7x

183

http://plse.cs.washington.edu/daikon/download/
http://scikit-learn.org/
https://goo.gl/pHku7x

Table 3: Savant’s effectiveness in terms of average acc@n

(n ∈ {1, 3, 5}), wef@n (n ∈ {1, 3, 5}) and MAP.

Total Avg. acc Avg. wef Avg.
P Bugs @1 @3 @5 @1 @3 @5 MAP

Chart 26 5.00 8.00 9.00 20.00 56.00 86.00 0.201
Closure 133 2.00 9.00 13.00 131.00 384.00 627.00 0.041
Math 106 22.03 36.72 47.00 82.97 226.14 348.14 0.261
Time 27 5.00 12.00 12.00 22.00 55.00 85.00 0.247
Lang 65 29.00 36.00 41.00 33.00 90.00 131.00 0.535
Overall 357 63.03 101.72 122.00 288.97 811.14 1277.14 0.221

45, 64]. For bugs appearing in single a method, even if all
faulty methods appear in the top-3 position, the MAP score
is only 0.33.

In spectrum-based fault localization, program elements
are often assigned the same suspiciousness score. Thus, we
repeat all metric calculations 100 times, using 100 different
seeds to randomly break ties.

5.2 Research Questions
We investigate the following research questions:

RQ1: How effective is Savant? In this research question,
we evaluate how effectively Savant identifies buggy methods
for the 357 bugs, computing average acc@n, wef@n, and
MAP scores (n ∈ {1, 3, 5}).
RQ2: How does Savant compare to previous ap-
proaches? In this research question, we compare Savant
to 12 previous techniques across all evaluation metrics.

RQ3: What is the impact of the different feature
sets on performance? By default, we use all features
from both Invariant Diff and the suspiciousness scores. In
this research question, we compare the two types of features
to evaluate their individual contribution to Savant’s effec-
tiveness by training and evaluating models on each set of
features independently.

RQ4: How much training data does Savant need to
work effectively? In the default setting, Savant uses n−1
out of n bugs as training data. We investigate the effective-
ness of Savant with reduced amount of training data. We do
this by evaluating Savant in a k-fold cross validation setting,
for k ranging from 2–10.

RQ5: How efficient is Savant? In this research question,
we measure the average running time needed for Savant to
output a ranked list of methods for a given bug.

5.3 Findings
RQ1: Savant’s Effectiveness. Table 3 shows the effec-
tiveness of Savant on bugs from the five Defects4J projects.
Savant successfully localizes 63.03, 101.72, and 122.00 out
of 357 bugs in terms of average acc@1, acc@3, and acc@5
score, respectively. The wasted effort across all projects is
288.97, 811.14, and 1277.14 (wef@1, wef@3, and wef@5, re-
spectively). The overall average MAP score is 0.221. Among
the five projects, Savant is most effective on Commons Lang,
achieving the highest acc@k (29, 36, and 41, respectively),
and a MAP score of 0.535. Over these experiments, Savant
terminated Daikon twice on a bug from the Math project
due to the time limit. In total, we invoked Daikon 129,798
times for the 357 faulty versions.

RQ2: Savant vs. Previous work.
Table 4 shows the effectiveness of the 12 baseline ap-

proaches on our dataset. Among the baselines, the top four

Table 4: Effectiveness of Baseline Approaches; We
use the shorthand names for programs for brevity.
“B” stands for baseline approaches, “P” is the
project name, “MUL” stands for Multric , and “OA”
is the overall results.

Average acc Average wef
B P @1 @3 @5 @1 @3 @5 MAP

ER1a

Chart 0.93 2.42 3.50 25.07 72.83 118.27 0.08
Closure 2.61 6.15 9.26 130.39 385.35 634.22 0.04
Math 8.31 19.70 28.80 97.69 275.74 434.00 0.16
Time 1.00 4.48 7.00 26.00 72.52 114.00 0.07
Lang 2.46 17.86 25.54 62.54 164.62 246.95 0.18
OA 15.31 50.61 74.10 341.69 971.06 1547.44 0.11

ER1b

Chart 4.00 4.00 6.00 22.00 66.00 108.00 0.15
Closure 2.61 6.15 9.26 130.39 385.35 634.22 0.04
Math 8.35 19.77 28.89 97.65 275.57 433.66 0.16
Time 3.00 3.00 3.00 24.00 72.00 120.00 0.05
Lang 22.00 32.00 38.09 43.00 112.50 168.38 0.37
OA 39.96 64.92 85.24 317.04 911.42 1464.26 0.15

ER5a

Chart 4.00 4.49 5.56 22.00 65.44 107.00 0.15

ER5b

Closure 0.31 0.69 1.17 132.69 397.48 661.40 0.01
Math 2.41 7.32 11.68 103.59 303.63 494.48 0.06
Time 3.00 3.00 3.00 24.00 72.00 120.00 0.05
Lang 23.20 31.83 38.32 41.80 113.22 169.24 0.38
OA 32.92 47.33 59.73 324.08 951.77 1552.12 0.10

ER5c

Chart 0.97 2.95 4.64 25.03 72.04 115.56 0.07
Closure 0.31 0.69 1.17 132.69 397.48 661.40 0.01
Math 2.36 7.21 11.54 103.64 303.87 494.99 0.06
Time 0.25 0.85 1.37 26.75 79.40 130.92 0.02
Lang 5.37 15.60 24.27 59.63 163.13 248.92 0.17
OA 9.26 27.30 42.99 347.74 1015.92 1651.79 0.06

GP02

Chart 0.00 0.00 0.00 26.00 78.00 130.00 0.01
Closure 0.10 0.30 0.50 132.90 398.36 663.49 0.00
Math 0.15 0.47 0.83 105.85 317.01 527.50 0.01
Time 0.00 0.00 0.00 27.00 81.00 135.00 0.00
Lang 8.00 11.00 12.12 57.00 167.00 273.78 0.12
OA 8.25 11.77 13.45 348.75 1041.37 1729.77 0.03

GP03

Chart 0.00 1.00 2.00 26.00 76.00 125.00 0.02
Closure 0.65 1.01 1.02 132.35 396.37 660.34 0.01
Math 0.31 0.90 1.37 105.69 316.14 525.60 0.01
Time 0.00 0.00 0.00 27.00 81.00 135.00 0.01
Lang 8.00 13.00 16.00 57.00 163.00 261.00 0.14
OA 8.96 15.91 20.39 348.04 1032.51 1706.94 0.03

GP13

Chart 4.00 4.00 6.00 22.00 66.00 108.00 0.15
Closure 2.61 6.15 9.26 130.39 385.35 634.22 0.04
Math 8.35 19.77 28.89 97.65 275.57 433.66 0.16
Time 3.00 3.00 3.00 24.00 72.00 120.00 0.05
Lang 22.00 32.00 38.09 43.00 112.50 168.38 0.37
OA 39.96 64.92 85.24 317.04 911.42 1464.26 0.15

GP19

Chart 4.00 4.00 6.00 22.00 66.00 108.00 0.15
Closure 2.60 6.11 9.22 130.40 385.42 634.37 0.04
Math 8.35 19.77 28.89 97.65 275.57 433.66 0.16
Time 3.00 3.00 3.00 24.00 72.00 120.00 0.05
Lang 22.00 32.00 38.09 43.00 112.50 168.38 0.37
OA 39.95 64.88 85.20 317.05 911.49 1464.41 0.15

Ochiai

Chart 2.00 4.00 6.00 24.00 69.00 109.00 0.12
Closure 1.95 4.70 8.77 131.05 388.77 639.29 0.04
Math 8.27 19.71 28.82 97.73 275.71 433.99 0.16
Time 5.50 7.00 9.00 21.50 62.50 99.50 0.12
Lang 18.84 28.50 35.09 46.16 125.47 187.35 0.34
OA 36.56 63.91 87.68 320.44 921.45 1469.13 0.14

MUL

Chart 4.35 6.44 8.18 21.65 62.14 98.35 0.15
Closure 1.83 5.14 7.84 131.17 388.24 639.73 0.03
Math 6.33 16.88 25.36 99.67 283.34 448.52 0.14
Time 3.71 5.47 6.52 23.29 67.33 108.65 0.10
Lang 22.80 30.04 34.06 42.20 113.80 177.57 0.36
OA 39.02 63.97 81.96 317.98 914.85 1472.82 0.14

Carot+

Chart 2.05 3.86 5.16 22.95 65.95 104.24 0.11
Closure 0.35 1.01 1.88 132.65 396.99 659.67 0.01
Math 5.81 13.84 20.48 99.19 284.99 457.32 0.10
Time 0.90 1.86 2.36 26.10 76.69 126.25 0.06
Lang 20.48 33.84 39.58 41.52 102.21 146.49 0.41
OA 29.59 54.41 69.46 322.41 926.83 1493.97 0.12

Legend

Savant’s improvement
10% ≤ improvement <20% 20% ≤ improvement <50%
50% ≤ improvement <100% 100% ≤ improvement

performers are ER1b, GP13, GP19 and Multric, and they
achieve more or less the same score for many metrics. The
absolute best performers are ER1b and GP13.

Savant outperforms these baselines in all metrics. It out-
performs ER1b and GP13 by 57.73%, 56.69%, and 43.13%
in terms of average acc@1, acc@3, and acc@5 scores. The
wasted effort of Savant is lower than those of ER1b and
GP13 by 8.85%, 10.94%, and 12.78% (wef@1, wef@3, and
wef@5 respectively). In terms of average MAP score, our
approach is more effective than ER1b and GP13 by 51.37%.

184

Table 5: Savant’s effectiveness using different features.

Avg. acc Avg. wef Avg.
Feature Set @1 @3 @5 @1 @3 @5 MAP

Inv. Changes 55.23 83.50 105.00 296.77 848.64 1346.14 0.179
Susp. Scores 53.81 86.56 105.09 298.19 845.11 1340.82 0.214
Default 63.03 101.72 122.00 288.97 811.14 1277.14 0.221

Overall, Savant outperforms all popular and state-of-the-art
baseline approaches across all measured metrics.

Note that although Multric includes Ochiai as a feature,
it does not considerably outperforms Ochiai. Multric out-
performs Ochiai by 6.73% and 0.09% in terms of average
acc@1 and acc@3 scores, and the wasted effort of Multric is
only lower than that of Ochiai by 0.77% and 0.72% in terms
of average wef@1 and wef@3 score. For the other metrics
(average acc@10, wef@10 and MAP scores), Ochiai outper-
forms Multric. This result is in contrast with that of Savant
which outperforms all existing techniques by a much larger
margin (e.g., 57.73% versus 6.73% for acc@1).

RQ3: Different Sets of Features. Table 5 shows the
effectiveness of Savant using invariant change features, sus-
piciousness scores features, and their combination (the de-
fault). Savant is less effective if only one type of features is
used to construct ranking models, across all metrics. Savant
using only suspiciousness scores is more accurate than using
only invariant changes according to most metrics, though
notably not acc@1, nor wef@1. Regardless of the features
used in the model, and unlike the baselines, Savant only
ranks methods that have changes in invariants in the two
set of execution traces, instead of all methods in faulty pro-
grams. This explains why Savant built using only suspi-
ciousness score features outperforms Multric. Overall, the
combination of the two feature types significantly improves
the effectiveness of Savant.

Table 6: Varying training data size: average acc@n

(n ∈ {1, 3, 5}), wef@n (n ∈ {1, 3, 5}) and Mean Average

Precision (MAP). “K” represents the number of folds in

cross-validation setting.

Avg. acc Avg. wef Avg.
K @1 @3 @5 @1 @3 @5 MAP

10 61.53 94.72 118.50 290.47 825.64 1298.64 0.215
9 53.03 90.72 110.50 298.97 844.14 1335.14 0.204
8 63.85 94.98 109.69 288.15 815.86 1302.45 0.219
7 68.35 102.19 111.50 283.65 797.83 1276.33 0.220
6 59.35 96.48 117.69 292.65 818.36 1294.45 0.222
5 68.85 94.50 112.00 283.15 809.02 1292.52 0.223
4 63.53 92.22 110.05 288.47 817.14 1307.59 0.219
3 62.50 93.00 114.46 289.50 822.50 1307.54 0.216
2 59.68 90.07 110.00 292.32 825.27 1314.61 0.211
Default 63.03 101.72 122.00 288.97 811.14 1277.14 0.221

RQ4: Varying Training Data Size. Table 6 shows the
effectiveness of Savant in various cross validation settings.
Although the effectiveness of Savant varies from setting to
setting, the range of effectiveness is fairly small. Among
the settings, 5-fold cross validation (k = 5) achieves the
best performance in most metrics compared to others, but
there is no setting that outperforms the others across all
metrics. We conclude that the amount of training data has
little impact on Savant’s accuracy.

RQ5: Efficiency. Table 7 shows average running time for
Savant on our dataset, including both learning and ranking.
The average time to output a ranked list of methods for a
given bug from any of the five projects is 13.894 seconds,

Table 7: Running time of Savant (in seconds)

Project Mean Standard Deviation

JFreeChart 1.530 0.285
Closure Compiler 31.845 3.971
Commons Math 4.101 0.609
Joda-Time 2.378 0.459
Commons Lang 1.970 0.341
Overall 13.894 14.232

with a standard deviation of 14.232 seconds. This average
is dominated by the running time on a single project (the
Closure Compiler); the median running time is 2.378 sec-
onds (Joda-Time). Among the projects, Savant has lowest
average execution time on JFreeChart bugs (1.53 seconds).
Closure Compiler bugs take the longest to localize. The Clo-
sure Compiler is considerably larger than the other projects,
leading to a longer running time in constructing ranking
models. We observe, however, that this running time is con-
servative, since it includes the training phase, which could
be amortized across different bug localization efforts, and
overall is reasonable in practice.

5.4 Threats to Validity
Threats to internal validity relate to experimental errors

and biases. We mitigate this risk by using an externally-
created dataset (Defects4J [22]). Since this dataset is cre-
ated by others, it reduces experimenter bias. To reduce the
likelihood of experimental errors, we have carefully checked
our implementation to the best of our abilities.

Threats to external validity relate to the generalizability
of our proposed approach. We have evaluated our approach
on 357 real bugs from 5 Java programs. Many previous
fault localization approaches are evaluated solely on syn-
thetic bugs [5, 21, 36, 38, 43, 58] or on substantially fewer
real bugs [31, 46, 61]. In the future, we plan to further mit-
igate this threat by evaluating Savant on more bugs from
more programs written in various programming languages
with diverse numbers of test cases.

Threats to construct validity relate to the suitability of
our evaluation metrics. We make use of acc@n, wef@n, and
MAP (n ∈ {1, 3, 5}). acc@n is based on findings by Parnin
and Orso [41] which recommend the use of absolute ranks
rather than percentages of program inspected. wef@n and
MAP are widely-used metrics in fault localization [3, 18, 58]
and various ranking techniques [26, 45, 52, 59, 64], respec-
tively.

6. RELATED WORK
Spectrum-Based Fault Localization. There have been
a wide variety of formulae proposed for computing the sus-
piciousness scores of program elements based on passing and
failing test cases. Tarantula is an early, foundational SBFL
technique that computes suspiciousness scores [21] based on
the intuition that program elements often executed by pass-
ing test cases but never or rarely executed by failing test
cases are less likely to be buggy. Subsequent researchers
have proposed and evaluated alternative, more accurate for-
mulae, such as Ochiai, proposed by Abreu et al. [4].

We describe and compare to a number of formulae that
have been recently demonstrated as either theoretically op-
timal or high-performing. Xie et al. [56] theoretically com-
pared many different suspiciousness scores, finding that for-

185

mulae belonging to two families outperform the others, in-
cluding Naish’s formula [38]. They also find that four of
the scoring functions proposed by Yoo [60] derived using
genetic programming (GP), are optimal. Xuan and Mon-
perrus [58] proposed Multric, which combines multiple fault
localization techniques together using a learning-to-rank al-
gorithm. Lucia et al. use 40 association measures in data
mining and statistics for fault localization [36]. However, Lu-
cia et al.’s association measures only slightly improve over
Ochiai [5]; Multric’s improvement is by a much larger mar-
gin. We have compared our approach against Multric [58],
formulae belonging to the best families identified by Xie et
al. [56], and the best performing formulae produced by ge-
netic programming [60]. Our experiments demonstrate that
Savant outperforms these state-of-the-art approaches by a
substantial margin.

Pytlik et al. [43] were the first to propose the use of likely
invariants for fault localization, as we discussed in Section 2.
Our approach uses a larger set of invariants, and uses them
as features in a ranking algorithm. Our comparison to an
extended version of Pytlik et al.’s approach showed that our
approach achieves better performance on our dataset.

Sahoo et al. [46] extend Pytlik et al.’s approach by adding
test case generation and backward slicing to reduce the num-
ber of program elements to inspect, and modify parts of
failing test cases to create new successful tests. Otherwise,
it requires specifications that describe the test cases. Sa-
hoo et al. evaluated their approach by localizing 6 real
faults in MySQL, 1 real fault in Squid, and 1 real fault in
Apache 2.2. Our work differs from theirs in several respects.
First, instead of filtering invariants, Savant uses them as
features to rank program elements. It is possible to com-
bine the filtering with the ranking approach in future work.
Second, Savant avoids several restrictions and limitations
of the previous work, in that it is not limited to programs
with test oracles, programs where character-level rewriting
of test cases makes sense, nor programs with test case speci-
fications. Finally, our evaluation is substantially larger. We
unfortunately cannot evaluate Sahoo et al.’s approach on
our dataset since we do lack test oracles (unless we man-
ually create them for all failing test cases), character-level
deletion of test cases do not make sense for most of the pro-
grams (except for some bugs from Closure Compiler), and
the test cases do not come with specifications. Moreover,
Sahoo et al.’s approach is demonstrated on C rather than
Java programs.

Le et al. [26] recently proposed to combine spectrum-based
fault localization with information retrieval based fault lo-
calization. Information retrieval based fault localization,
e.g., [64, 59, 23], takes as input a description of a bug and
returns a set of program elements with similar contents as
the words that appear in the bug description. Our work is
complementary with theirs: While their approach focuses on
combining two families of techniques, our approach focuses
on improving one of the families. It is possible to replace
the spectrum-based fault localization component of this ap-
proach with Savant, an option we leave to future work.

Mining Likely Invariants and Its Usages. Many ap-
proaches have been proposed to mine likely invariants in var-
ious formats [11, 12, 16, 25, 27, 34, 51]. We use Daikon [16],
the most popular invariant mining tool. We describe it in
Section 2.

We highlight a selection of the many approaches that use
mined invariants, often inferred using Daikon, for various
purposes. Baliga et al. [9] infer data structure invariants to
prevent kernel-level rootkits from maliciously modifying key
data structures. Schuler et al. [47] use likely invariants to
assess the impact of mutants, demonstrating that mutants
that violate likely invariants are less likely to be equivalent
mutants. Abreu et al. use two kinds of program invariants
to create a test oracle which can be used to label test cases
as passed or failed [2]. This approach – as well as existing
approaches on test oracle generation (c.f., [10]) – can be used
in conjunction with an automated test generation technique
to create new labelled test cases to enrich the input of an
SBFL technique, including ours.

7. CONCLUSION AND FUTURE WORK
Debugging is a time consuming process. To help develop-

ers debug, many spectrum-based fault localization (SBFL)
techniques have been proposed. The accuracy of these tech-
niques is not yet optimal, and thus additional research is
needed to advance the field. In this work, we extend the fron-
tiers of research in SBFL, by proposing Savant, an approach
that uses Daikon invariants to construct a rich set of features
to localize buggy program elements using a learning-to-rank
algorithm. We have evaluated our solution on a set of 357
bugs from 5 programs in the Defects4J benchmark. Our
evaluation demonstrates that Savant can successfully local-
ize 63.03, 101.72, 122 bugs on average within the top 1, top
3, and top 5 listed methods, respectively. We have compared
Savant against 10 SBFL techniques that have been proven
to outperform many other SBFL techniques, a hybrid SBFL
technique that also uses learning-to-rank (Multric), and an
extended version of an SBFL technique that also uses likely
invariants (Carrot+). Savant can locate 57.73%, 56.69%,
and 43.13% more bugs at top 1, top 3, and top 5 methods
as compared to the best performing baseline techniques.

In a future work, we plan to improve Savant further by
selectively including a subset of invariants specialized for
a target buggy program version and its spectra. We also
plan to include a refinement process which incrementally
adds or removes invariants to produce a better ranked list
of methods. Furthermore, we plan to extend our evaluation
to include more bugs beyond those in the Defects4J bench-
mark and compare Savant against other fault localization
approaches. We also plan to investigate the impact of num-
ber of passed and failed test cases as well as other factors
on the effectiveness of Savant.

Dataset and Tool Release. Savant’s dataset and imple-
mentation are publicly available at https://goo.gl/PBCqFX.

8. ACKNOWLEDGMENTS
The authors gratefully acknowledge the partial support

of AFRL, under AFRL Contract No. FA8750-15-2-0075 as
well as the National Research Foundation, Prime Minister’s
Office, Singapore under its International Research Centres in
Singapore Funding Initiative. Any views, opinions, findings
or recommendations are those of the author(s) and do not
necessarily reflect the views of the sponsoring agencies.

9. REFERENCES
[1] http://plse.cs.washington.edu/daikon/download/doc/

daikon.html#Invariant-list.

186

https://goo.gl/PBCqFX
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#Invariant-list
http://plse.cs.washington.edu/daikon/download/doc/daikon.html#Invariant-list

[2] R. Abreu, A. González, P. Zoeteweij, and A. J. C. van
Gemund. Automatic software fault localization using
generic program invariants. In Proceedings of the ACM
Symposium on Applied Computing (SAC), 2008.

[3] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund.
Spectrum-based multiple fault localization. In
Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering, 2009.

[4] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. van
Gemund. A practical evaluation of spectrum-based
fault localization. Journal of Systems and Software,
2009.

[5] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund. On
the Accuracy of Spectrum-based Fault Localization. In
TAICPART-MUTATION, 2007.

[6] J. Anvik, L. Hiew, and G. C. Murphy. Coping with an
open bug repository. In Proceedings of the 2005
OOPSLA workshop on Eclipse Technology eXchange,
ETX 2005, pages 35–39, 2005.

[7] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Directed
test generation for effective fault localization. In
ISSTA, 2010.

[8] S. Artzi, J. Dolby, F. Tip, and M. Pistoia. Practical
fault localization for dynamic web applications. In
Proceedings of the 32nd ACM/IEEE Int. Conference
on Software Engineering, ICSE ’10, 2010.

[9] A. Baliga, V. Ganapathy, and L. Iftode. Detecting
kernel-level rootkits using data structure invariants.
IEEE Trans. Dependable Sec. Comput., 8(5):670–684,
2011.

[10] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and
S. Yoo. The oracle problem in software testing: A
survey. IEEE Trans. Software Eng., 41(5):507–525,
2015.

[11] I. Beschastnikh, J. Abrahamson, Y. Brun, and M. D.
Ernst. Synoptic: studying logged behavior with
inferred models. In 19th ACM SIGSOFT Symposium
on the Foundations of Software Engineering (FSE-19)
and 13rd European Software Engineering Conference
(ESEC-13),2011, pages 448–451, 2011.

[12] I. Beschastnikh, Y. Brun, J. Abrahamson, M. D.
Ernst, and A. Krishnamurthy. Using declarative
specification to improve the understanding,
extensibility, and comparison of model-inference
algorithms. IEEE Trans. Software Eng.,
41(4):408–428, 2015.

[13] C.-C. Chang and C.-J. Lin. LIBSVM: A library for
support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1–27:27,
2011. Software available at
http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

[14] H. Cleve and A. Zeller. Locating causes of program
failures. In ICSE, 2005.

[15] D. Developers. Daikon invariant list.
plse.cs.washington.edu/daikon/download/doc/daikon.
html#Invariant-list. Accessed: 2015-08-20.

[16] M. D. Ernst, J. Cockrell, W. G. Griswold, and
D. Notkin. Dynamically discovering likely program
invariants to support program evolution. In
Proceedings of the 1999 International Conference on
Software Engineering, ICSE’ 99, pages 213–224, 1999.

[17] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,

C. Pacheco, M. S. Tschantz, and C. Xiao. The daikon
system for dynamic detection of likely invariants. Sci.
Comput. Program., 69(1-3):35–45, 2007.

[18] A. González-Sanchez, R. Abreu, H. Gross, and
A. J. C. van Gemund. Prioritizing tests for fault
localization through ambiguity group reduction. In
26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), 2011.

[19] J. Han and M. Kamber. Data Mining: Concepts and
Techniques (2nd ed.). Morgan Kaufmann, 2006.

[20] D. J. Hand, H. Mannila, and P. Smyth. Principles of
Data Mining. MIT Press, 2001.

[21] J. Jones and M. Harrold. Empirical evaluation of the
tarantula automatic fault-localization technique. In
20th IEEE/ACM international Conference on
Automated software engineering, 2005.

[22] R. Just, D. Jalali, and M. D. Ernst. Defects4j: a
database of existing faults to enable controlled testing
studies for java programs. In Int. Symposium on
Software Testing and Analysis, ISSTA ’14, pages
437–440, 2014.

[23] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where should
we fix this bug? a two-phase recommendation model.
IEEE Transactions on Software Engineering,
39(11):1597–1610, 2013.

[24] P. S. Kochhar, X. Xia, D. Lo, and S. Li. Practitioners’
expectations on automated fault localization. In
Proceedings of the 2016 International Symposium on
Software Testing and Analysis. ACM, 2016.

[25] I. Krka, Y. Brun, and N. Medvidovic. Automatic
mining of specifications from invocation traces and
method invariants. In Proc. of the 22nd ACM
SIGSOFT Int. Symposium on Foundations of Software
Engineering, (FSE-22),, pages 178–189, 2014.

[26] T. B. Le, R. J. Oentaryo, and D. Lo. Information
retrieval and spectrum based bug localization: better
together. In Proc. of the 10th Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages
579–590, 2015.

[27] T. C. Le, S. Qin, and W. Chin. Termination and
non-termination specification inference. In Proc. of the
36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, 2015, pages
489–498, 2015.

[28] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer.
Genprog: A generic method for automatic software
repair. IEEE Trans. Software Eng., 38(1):54–72, 2012.

[29] C.-P. Lee and C.-b. Lin. Large-scale linear ranksvm.
Neural computation, 26(4):781–817, 2014.

[30] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Scalable statistical bug isolation. In PLDI,
2005.

[31] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I.
Jordan. Scalable statistical bug isolation. In ACM
SIGPLAN Notices, volume 40, pages 15–26. ACM,
2005.

[32] C. Liu, X. Yan, L. Fei, J. Han, and S. Midkiff. Sober:
Statistical model-based bug localization. In
ESEC/FSE, 2005.

[33] T.-Y. Liu. Learning to rank for information retrieval.
Foundations and Trends in Information Retrieval,
3(3):225–331, 2009.

187

http://www.csie.ntu.edu.tw/~cjlin/libsvm
plse.cs.washington.edu/daikon/download/doc/daikon.html#Invariant-list
plse.cs.washington.edu/daikon/download/doc/daikon.html#Invariant-list

[34] D. Lo and S. Khoo. Smartic: towards building an
accurate, robust and scalable specification miner. In
Proc. of the 14th ACM SIGSOFT Int. Symposium on
Foundations of Software Engineering, FSE 2006,
pages 265–275, 2006.

[35] F. Long and M. Rinard. Automatic patch generation
by learning correct code. In Proceedings of the 43rd
Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL, 2016.

[36] Lucia, D. Lo, L. Jiang, F. Thung, and A. Budi.
Extended comprehensive study of association
measures for fault localization. Journal of Software:
Evolution and Process, 26(2):172–219, 2014.

[37] Lucia, F. Thung, D. Lo, and L. Jiang. Are faults
localizable? In MSR, pages 74–77, 2012.

[38] L. Naish, H. J. Lee, and K. Ramamohanarao. A model
for spectra-based software diagnosis. ACM
Transactions on software engineering and methodology
(TOSEM), 20(3):11, 2011.

[39] A. T. Nguyen, T. T. Nguyen, J. M. Al-Kofahi, H. V.
Nguyen, and T. N. Nguyen. A topic-based approach
for narrowing the search space of buggy files from a
bug report. In 26th IEEE/ACM Int. Conference on
Automated Software Engineering, 2011.

[40] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and
S. Chandra. Semfix: program repair via semantic
analysis. In 35th International Conference on Software
Engineering, ICSE ’13, pages 772–781, 2013.

[41] C. Parnin and A. Orso. Are automated debugging
techniques actually helping programmers? In Proc. of
the 20th International Symposium on Software Testing
and Analysis, ISSTA 2011, pages 199–209, 2011.

[42] D. Poshyvanyk, Y. Guéhéneuc, A. Marcus,
G. Antoniol, and V. Rajlich. Feature location using
probabilistic ranking of methods based on execution
scenarios and information retrieval. IEEE Trans.
Software Eng., 33(6):420–432, 2007.

[43] B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P.
Reiss. Automated fault localization using potential
invariants. Proceedings of Workshop on Automated
and Algorithmic Debugging, 2003.

[44] S. Rao and A. C. Kak. Retrieval from software
libraries for bug localization: a comparative study of
generic and composite text models. In MSR, 2011.

[45] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry.
Improving bug localization using structured
information retrieval. In 28th IEEE/ACM Int.
Conference on Automated Software Engineering, 2013.

[46] S. K. Sahoo, J. Criswell, C. Geigle, and V. S. Adve.
Using likely invariants for automated software fault
localization. In Architectural Support for Programming
Languages and Operating Systems, ASPLOS, 2013.

[47] D. Schuler, V. Dallmeier, and A. Zeller. Efficient
mutation testing by checking invariant violations. In
Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ISSTA, 2009.

[48] B. Sisman and A. C. Kak. Incorporating version
histories in information retrieval based bug
localization. In MSR, pages 50–59, 2012.

[49] F. Steimann, M. Frenkel, and R. Abreu. Threats to
the validity and value of empirical assessments of the

accuracy of coverage-based fault locators. In
Proceedings of the 2013 International Symposium on
Software Testing and Analysis, pages 314–324. ACM,
2013.

[50] G. Tassey. The economic impacts of inadequate
infrastructure for software testing. National Institute
of Standards and Technology. Planning Report
02-3.2002, 2002.

[51] M. Trinh, Q. L. Le, C. David, and W. Chin.
Bi-abduction with pure properties for specification
inference. In Programming Languages and Systems -
11th Asian Symposium, APLAS 2013, pages 107–123,
2013.

[52] Q. Wang, C. Parnin, and A. Orso. Evaluating the
usefulness of IR-based fault localization techniques. In
Proceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA, pages 1–11,
2015.

[53] W. E. Wong, V. Debroy, and B. Choi. A family of
code coverage-based heuristics for effective fault
localization. J. Syst. Softw., 83(2):188–208, Feb 2010.

[54] W. E. Wong, V. Debroy, R. Golden, X. Xu, and B. M.
Thuraisingham. Effective software fault localization
using an RBF neural network. IEEE Transactions on
Reliability, 61(1):149–169, 2012.

[55] W. E. Wong, Y. Qi, L. Zhao, and K.-Y. Cai. Effective
fault localization using code coverage. In COMPSAC,
pages 449–456, 2007.

[56] X. Xie, T. Y. Chen, F. Kuo, and B. Xu. A theoretical
analysis of the risk evaluation formulas for
spectrum-based fault localization. ACM Trans. Softw.
Eng. Methodol., 22(4):31, 2013.

[57] X. Xie, F. Kuo, T. Y. Chen, S. Yoo, and M. Harman.
Provably optimal and human-competitive results in
SBSE for spectrum based fault localisation. In 5th Int.
Symposium on Search Based Software Engineering -
SSBSE 2013, Proceedings, pages 224–238, 2013.

[58] J. Xuan and M. Monperrus. Learning to combine
multiple ranking metrics for fault localization. In 30th
IEEE Int. Conference on Software Maintenance and
Evolution, 2014, pages 191–200, 2014.

[59] X. Ye, R. C. Bunescu, and C. Liu. Learning to rank
relevant files for bug reports using domain knowledge.
In 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE, 2014.

[60] S. Yoo. Evolving human competitive spectra-based
fault localisation techniques. In 4th International
Symposium Search Based Software Engineering
SSBSE, 2012.

[61] A. Zeller. Yesterday, my program worked. today, it
does not. why? In ESEC/FSE, 1999.

[62] A. Zeller. Isolating cause-effect chains from computer
programs. In FSE, pages 1–10, 2002.

[63] A. Zeller and R. Hildebrandt. Simplifying and
isolating failure-inducing input. IEEE Transaction on
Software Engineering, 2002.

[64] J. Zhou, H. Zhang, and D. Lo. Where should the bugs
be fixed? more accurate information retrieval-based
bug localization based on bug reports. In ICSE, pages
14–24, 2012.

188

	Introduction
	Preliminaries
	Spectrum-Based Fault Localization
	Mining Likely Invariants
	Learning-to-Rank

	Motivating Example
	Proposed Approach
	Method Clustering & Test Case Selection
	Invariant Mining
	Feature Extraction
	Invariant Change Features
	Suspiciousness Scores Features

	Model Learning and Method Ranking

	Experiments
	Experimental Settings
	Research Questions
	Findings
	Threats to Validity

	Related Work
	Conclusion and Future Work
	Acknowledgments
	References

