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Abstract—Features of frameworks, such as inversion of control
and the structure of framework applications, require develop-
ers to adjust their programming and debugging strategies as
compared to sequential programs. However, the benefits and
challenges of framework debugging are not fully understood,
and gaining this knowledge could provide guidance in debugging
strategies and framework tool design. To gain insight into the
framework application debugging process, we performed two
human studies investigating how developers fix applications that
use a framework API incorrectly. These studies focused on the
Android Fragment class and the ROS framework. We analyzed
the results of the studies using a mixed-methods approach, using
techniques from qualitative approaches. Our analysis found that
participants benefited from the structure of frameworks and
the pre-made solutions to common problems in the domain.
Participants encountered challenges with understanding frame-
work abstractions, and had particular difficulty with inversion of
control and object protocol issues. When compared to prior work
on debugging, these results show that framework applications
have unique debugging challenges.

Index Terms—Frameworks, Debugging, Qualitative study

I. INTRODUCTION

Frameworks are an important and challenging part of the

modern software development process, illustrated by Stack-

Overflow where 7 of the top 24 questions categories were

on frameworks.1. However, to the best of our knowledge,

the prior literature only briefly mentions the challenges that

arise during the framework application debugging process.

At best, prior work discusses general debugging principles

that apply to framework application debugging only at a

high level, such as developers using keywords in an error

message to find the correct section of code to fix [1]. Some

examples of prior literature include a study that categorized

the high-level learning barriers of new framework develop-

ers [2] and another that investigated how developers search for

relevant information while debugging [1]. Researchers have

investigated how aspects of the debugging process conform

to information foraging theory [3], found that framework

application developers are willing to wait a long time for help

on Question and Answer forums [4], and found that framework

applications contain code patterns [5], [6].

Our conjecture is the features that differentiate framework

programs from sequential programs that use libraries (the

heavy use of inversion of control, object protocols, and declar-

ative artifacts [7]) present unique debugging challenges and

unique debugging benefits. As examples, inversion of control,
where core framework code controls the data and execution

∗ all authors are from Carnegie Mellon University
1As of Aug. 14th, 2018

flow of an application [7], could increase the complexity of

understanding whether and how state changes in one method

call affect another method call, while the standard structure of

framework applications could make information easier to lo-

cate. A better understanding of how these factors influence the

debugging process could lead to improved framework design,

along with improved strategies and tools for debugging.

This paper presents an exploratory study that seeks to

understand how frameworks specifically both help and hinder

developers during the debugging process. To improve our

study’s external validity, we investigated two frameworks with

different use cases: Android, a mobile development frame-

work, and the Robotic Operating System (ROS), a robotics

framework. We created debugging tasks by creating violations

of framework directives, statements in framework documenta-

tion that specify prescriptive guidance about the framework’s

application programming interface (API) and usually contain

nontrivial, unexpected information (e.g., “[setArguments] can

only be called before the Fragment is attached to its Activity

”) [8]. We focused on directives because these statements

surface programming challenges specific to interacting with a

framework, instead of those related to a particular application.

We collected directives for these frameworks and then created

debugging tasks based on directive violations (code that con-

travenes a directive). We then had participants perform these

debugging tasks and recorded their debugging process.

We used a mixed-methods approach to guide our study

and analysis, borrowing techniques from case studies [9],

constructivist grounded theory [10], and qualitative content

analysis [11]. We used this approach to draw insights from

debugging cases of interest, while making the cases as re-

alistic as possible. We found that certain aspects of frame-

works aid developers while debugging, while other aspects

of frameworks present challenges (e.g., inversion of control

causes participants to misdiagnose method states). Our key

contributions are:

• Released summaries from two human studies of debug-

ging directive violations in the Android Fragment class

and the Robotic Operating System (ROS).

• A categorization of how violations of framework direc-

tives are presented to developers

• An enumeration of the benefits and challenges in debug-

ging misuses of framework APIs.

We present the human study methodology in Section II, and

the analysis and results of that study in Section III. Section IV

outlines threats to validity. Section V discusses related work.

Section VI concludes.
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Fig. 1: An example of the Fragment class taken from the An-

droid development documentation. This diagram demonstrates

how the Fragment class is used in an Activity.

II. METHODOLOGY

We performed an exploratory study into framework API

debugging to understand the unique aspects that framework ap-

plication developers encounter during the debugging process.

Our exploratory study consisted of multiple participants per-

forming lab-created debugging tasks. The risk of this approach

is that the conclusions may not apply to real framework debug-

ging scenarios. To mitigate this risk, we took steps to make the

tasks as realistic as possible, basing the tasks off debugging

scenarios encountered by actual developers in practice. We

describe the methodology we used to select the frameworks

to study Section II-A and create the tasks in Section II-B. The

results from an investigation into the possible types of directive

violations, used to inform the chosen tasks, are presented in

Section II-C. Once we created the tasks, we recruited study

participants and conducted human trials, using the procedure

described in Section II-D. After recording participants per-

forming the tasks, we coded the recordings using an iterative

process. First, we coded the interesting actions of the first

few participants in each framework that provided insight on

the problem solving process — for example, we recorded

if a participant ran the debugger or made a problem related

statement but we did not include if a participant accidentally

clicked on a wrong tab. Then, we defined coding frames of

the interesting actions using qualitative content analysis, a

technique that condenses verbal or visual data into important

topics [11], and used the coding frames to code the recordings.

After we finished coding, we performed theoretical sorting to

condense the coded data into the benefits and challenges of

framework debugging [10]. A summary of our coding process

is described in Section II-E.

A. Frameworks in the Study

Frameworks provide a set of interfaces and classes that

reduce the cost to achieve a general goal [12]. Developers

create applications to achieve specific goals by extending

frameworks, often by extending abstract framework methods.

The framework typically calls application code through inver-

sion of control, a design in which the core framework code, not

the application-specific code, controls the data and execution

flow of an application [7]. Frameworks commonly require

applications to conform to a specified application structure.

Frameworks also commonly impose object protocols, or or-

dering constraints on calls to an object’s methods [13], and

require certain declarative artifacts, non-source code files that

contain configuration information [7].

We constructed debugging tasks for two frameworks: An-

droid (v. 5.0 Lollipop–API 21, specifically the Fragment class),

and the Robotic Operating System (ROS) (Kinetic Kame).

Google’s Android [14] provides a Java framework for

developing mobile applications. Android is a widely-used,

mature framework and has been released for over seven years.

In the Android framework, the Fragment class represents a

reusable component of an Android application’s user interface.

A picture of an Android Fragment in an example Android

application is shown in Figure 1,2 to illustrate its usage. We

began with the Android framework for three reasons: (1) it

is widely-used and well-established, (2) it makes heavy use

of inversion of control and object protocols, key features that

differentiate frameworks from libraries, and (3) multiple devel-

opers express difficulties with the framework, as demonstrated

by the many questions on StackOverflow about it.

After selecting the Android framework, we decided to

perform an in-depth analysis into the directives of one class,

to collect a diverse set of directive violation consequences.

We queried StackOverflow for questions by class, finding

that the Activity class had the highest number of posts and

the Fragment class had the second highest number of posts.

After investigating the questions for both, we focused on the

Fragment class because the Activity keyword often turned up

questions that were not related to the class. The Fragment class

also requires developers to correctly implement the Fragment

lifecycle inside of the Activity lifecycle, a fairly complicated

workflow, which we speculated might lead to more or more

interesting debugging challenges.

To support the generalizability of our claims, we selected

ROS as a second framework for study. The Robot Operating
System [15] (ROS) is a framework for creating robotics

applications, with a focus on the communication between

various robotic components. ROS applications are built as a

collection of nodes that communicate in an event driven model.

ROS is also a mature framework and has been released for

over eight years. ROS is written in both C++ and Python.

Our criteria for the second framework was that it should

focus on a substantially different domain than Android, and

have a different framework architecture. ROS satisfies these

criteria, because: (1) ROS is designed for robotic applications

instead of mobile applications, (2) ROS uses an event based

architecture instead of the tiered architecture of Android, (3)

ROS is written in C++ instead of Java, and (4) ROS has a

smaller user base, but still sufficient users that we could find

experienced participants for the study.

2Taken from https://developer.android.com/guide/components/fragments
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B. Task Creation Methodology

We used violations of framework directives to create the

debugging tasks. Framework directives are possibly surpris-

ing statements in a documentation source about how to

use the framework (e.g., “setHasOptionsMenu(true) must

be called to execute an overridden onCreateOptionsMenu

method”) [16]. Focusing on directive violations was key to

our study because violations thereof capture mistakes specific

to framework programming rather than bugs related to applica-

tion logic. This moreover improves the chances that our results

generalize to other framework API misuse errors. Framework

directives are also likely to illuminate debugging situations

where participants have difficulty with a framework, due to

their surprising nature.

The process of extracting directives for both frameworks

consisted of one author extracting directives from the docu-

mentation and another author double-checking the extracted

directives, similar to the coding process in prior work [17].

We were lenient on the definition of “possibly surprising”

and included any rule that was not already checked by the

type system or did not focus on the possible null value for a

parameter. However, we restricted the directives in the study

to directives that were testable. Thus, in our study, a directive

violation is a section of code or application that does not

conform to the testable specification statement.

To inform our task selection, we investigated the conse-

quences of violating Android Fragment directives and how

those violations were presented to developers. We collected 45

Android Fragment directives from three official documentation

sources: (1) 11 from the Fragment page in the developer’s

guide,3 (2) 19 from the Fragment API page,4 and (3) 15

from the Fragment class’s source code. We created viola-

tion scenarios for each directive through a manual process

of violating the directive and then confirming the directive

violation, either through the scenario’s output or through print

statements. We then categorized the directives by the directive

violation consequence, or the effect on the application that the

developer sees when that directive is violated. The directive

violation consequence categories are discussed in Section II-C.

To select tasks, we searched for StackOverflow questions

that cover Android Fragment directives from a wide range

of violation consequence categories. We used keywords taken

from the directives or error messages produced by an author-

written violation of the directive to find the StackOverflow

questions. We found seven unique questions that covered the

directives and provided enough information to reproduce the

problem. These seven questions were used to create seven

Android tasks. The seven tasks were created by taking an

Android Lollipop sample application5 that demonstrated the

various notifications available in Android Lollipop and chang-

ing the application to encompass the scenarios mentioned in

the StackOverflow questions.

3developer.android.com/guide/components/fragments.html
4developer.android.com/reference/android/app/Fragment.html
5github.com/googlesamples/android-LNotifications

For the ROS framework, we extracted 28 directives from

two sources: (1) 9 from the official ROS C++ documentation,6

and (2) 19 from ROS C++ source code.7 Due to the relatively

low number of online questions about ROS, we were unable to

collect ROS directive scenarios from StackOverflow. Instead,

we choose three directives that represented materially different

cases, and manually created tasks for each. We created the

first and third task by modifying the TurtleSim scenario,8 a

two node configuration where a virtual turtle in one window

moves and publishes the movements so the virtual turtle in

the other window mimics the movements. The second task

involved a simple, custom-built directory reading application.

In the rest of the paper, the Android tasks and par-

ticipants will be prefixed with a “TA” and “PA” respec-

tively. The ROS tasks and participants will be prefixed with

a “TR” and “PR” respectively. Table I lists the number

of participants per task and briefly explains the Android

and ROS tasks. A link to the Android tasks and steps to

recreate the ROS tasks can be found in the readme of

https://github.com/cbogart/ViolationOfDirectives.

C. Directive Categorization By Consequence

To inform the trials in our human study, we investigated

the ways that frameworks present errors to developers. This

investigation provided a greater understanding of the debug-

ging situations that developers encounter when debugging

framework applications, and ensured a diversity of tasks for

our human study. For the investigation, we manually violated

Android Fragment directives, and then grouped the violation

consequences into categories. We then collected three ROS

directive violations and found that they fit into the previously

created categories. Due to the limited investigation, we do

not make claims that the categories will generalize to all

frameworks. However, the results are useful as an initial

investigation into the ways that frameworks present directive

violations to developers.

The consequences of violating 41 Android Fragment di-

rectives are shown in Table II and explained below. We

found that violating certain directives can produce multiple

consequences (e.g., a violation can produce a tool warning and

crash with reference to the directive), but each consequence

is mutually exclusive (the same consequence could not be

categorized in multiple categories - an application crash cannot

be both classified as crash with reference to the directive and

crash without reference to the directive). We could violate

one directive in two different ways to produce three possible

consequences. We were also able to violate two directives in

two ways, each with different consequences.

Compiler Error. When these directives were violated, the

framework threw a compiler error, preventing the application

from compiling. This consequence occurred when invalid

semantics produced a directive violation. One example is when

6wiki.ros.org
7docs.ros.org/api
8http://wiki.ros.org/ROS/Tutorials/UsingRxconsoleRoslaunch
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Task Count Goal Violated Directive Result of Directive Violation

TA1 5 The participant must connect Application components must Any attempt to access one of
user inputs to the output have a unique ID to be the components with the
message when input components referenced individually. same ID returned the last
initially share the same ID. component added.

TA2 6 The participant must display the The application should not AndroidStudio displayed a
application start time on a pass time data through warning and recommended
tab without a warning. the constructor. a fix.

TA3 4 The participant must make the The framework only checks for The OptionsMenu does not
framework check for an an OptionsMenu if the application appear, although an
updated OptionsMenu. calls setHasOptionsMenu(true). OptionsMenu is defined.

TA4 5 The participant must display the The Fragment could only access The application crashed
application’s Activity (the entry the Activity if the Activity was with a notification that the
point for an Android application) attached to the Fragment, and Activity was not set.
title in a pop-up message on a the Activity was not attached.
specific tab.

TA5 4 The participant must fix a problem A tab’s arguments can only The application crashed, stating
that occurs when the application be set before the tab is that arguments can only be
tries to change the color of a accessed. set before the tab has started.
button on a tab when the tab
had been previously accessed.

TA6 3 The participant must change a Items should be added to the The OptionsMenu would not
specified ContextMenu to an OptionsMenu in the appear.
OptionsMenu. onCreateOptionsMenu method.

TA7 5 The participant must fix an In the application’s current state, The application crashed with
incorrect inflate method call. the last parameter of the inflate a stack trace that pointed

call must be false. towards core framework code.

TR1 8 The participant must fix an spinOnce() cannot be used when A node in the application would
incorrect spinOnce() call. the framework should perform quit unexpectedly without an

the callback more than once. error message.

TR2 8 The participant must fix an Local namespaces are not checked The parameter search returned
application node’s parameter if a global namespace is used that the parameter does not exist.
access. in a parameter search.

TR3 6 The participant must fix an An incorrect message type was The application crashed with an
obsolete message type. used for this version of ROS. incorrect type declaration error.

TABLE I: Tasks in our human study. TA tasks indicate Android tasks; TR, ROS tasks. “Count” shows number of participants

per task. “Goal” indicates task success conditions. “Violated Directive” is a simplified explanation of the violated directive

motivating the task. “Result of Directive Violation” explains how the application presented errors to participants.

Directive Violation Consequence Count

Compiler Error 3
Crash With Reference To Directive 19
Crash Without Reference To Directive 2
Missing Feature 9
No Obvious Effect 5
Tool Warning 3
Wrong Value Returned 2

TABLE II: Categorized consequences from violating 41 direc-

tives. A directive violation may have multiple consequences,

but each consequence is mutually exclusive.

the documentation specified that a method could not be over-

ridden. The compiler prevented a developer from overriding

this method because the method was declared with the final

modifier in the parent class.

Crash With Reference To Directive. When these directives

were violated, the application crashed with an exception that

notified the user of the directive violation either directly or

indirectly. One example of this category is, getActivity()

should not be called when the Fragment is not attached to

the Activity. If this directive was violated, the application

crashed with a null return from getActivity(). This category

contains a high number of directives because all the directives

found in the Fragment class’s code were of this type.

Crash Without Reference To Directive. When these direc-

tives were violated, the application crashed with an exception

that did not notify the developer that a directive was violated,

usually with an error pointing to where the application crashed

instead of the location where the application needed to be

fixed. Violations in this category occur when a more general

exception message is thrown, or violating the directive puts

the application into an invalid state and the invalid state

is caught in a later line. One example in this category is

when the result of the inflate method is used as the return
result for onCreateView, the last parameter to the inflate

method call must be false. If this directive was violated,

the application would crash with a stack trace that pointed

to internal framework code and not the inflate line.

Missing Feature. When these directives were violated, the
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framework application did not produce the intended effect

of the relevant section of code (i.e., the code ran with-

out errors but the section of code with the directive vi-

olation did not produce the intended feature). The effect

did not occur either because violating the directive caused

the control flow to change or the semantics were changed.

For example, one directive states that an application will
only execute the Fragment’s onCreateOptionsMenu method if
the Fragment calls hasOptionsMenu(true) in the onCreate

method. If the hasOptionsMenu(true) call is removed, the

OptionsMenu will not appear, even if the Fragment overrides

onCreateOptionsMenu.

No Obvious Effect When these directives were violated,

the framework correctly performed the intended action of

the associated code segment without crashing the application.

One example of this category is a directive that states that

if a Fragment does not have a user interface (UI), then
the Fragment should be accessed by findFragmentByTag(),

but the Fragment without a UI could be accessed by

findFragmentById() without noticeable consequences.

Tool Warning. While the application still compiled with these

directive violations, if these directives are violated, the recom-

mended tools for developing applications in the framework

(in the case of Android, AndroidStudio, the recommended

Android Integrated Development Environment) warn develop-

ers about the code, and sometimes recommend a possible fix.

For example, the directive, classes that subclass the Fragment

class must have a public no-argument constructor produces

a warning when violated. An application will compile if the

class subclassing Fragment lacks an empty constructor, but

AndroidStudio displays a warning in the class’s source file.

Wrong Value Returned. When these directives were violated,

the application did not crash, but a reference to a part of the

application was lost or used incorrectly. Any attempt to use

the lost or incorrect reference returned a wrong value. For

example, when a developer dynamically added a UI element,
the developer must assign a unique tag to the added UI
element. If the added UI element does not use a unique tag,

the new tag overrides the matching tag of a previous UI

element. The previous UI element is now unreachable through

framework supported methods.

D. Human Trials Methodology

We based our human trial methodology on other previous

developer studies, such as study by Piorkowski et al. [18].

After we obtained IRB approval, our human trial process

started with a pre-survey to document participants’ framework

experience. We provided participants a Surface Pro 3 tablet

containing the tasks, and we instructed them to perform think-

aloud debugging, vocalizing what they thought as they went

through the debugging process [19].

We assigned a task to each participant, and asked them to

fix the bug. We did not inform participants of the directive vi-

olation in the task because we were interested in also studying

the fault localization process. If participants finished a task and

could stay for another 20 minutes, we asked them to attempt

another task. We did this to gain more insight on the question

if certain tasks were hard or if certain participants were much

more efficient at all the tasks. All but one participant were

willing to spend more than 20 minutes to attempt the task

once they started. We initially assigned tasks randomly, but

later selected tasks that the fewest participants had attempted,

to produce relatively even task coverage. Android participants

spent about two to three hours for each session. Due to

removing an unhelpful pre-trial application familiarization

period, our ROS sessions lasted around one hour. Participants

were permitted to quit at any time (we never stopped them

in their work). We allowed participants to search online for

anything, including the inspiration for the tasks, but we did

not allow them to post questions. While searching online,

no participant found the inspiration for any of the study’s

tasks. During think-aloud debugging, if participants stopped

explaining their thought processes, we prompted them through

questions like “What are you thinking now?” and “What is
your reasoning for that?” Occasionally, we asked “Why not?”
if participants commented they would normally do an action,

but they were choosing not to. In addition to asking them to

vocalize aloud their thoughts and strategies during the tasks,

we asked participants about their approach in greater detail at

the end of each participant’s session.

For the Android study, we collected a convenience sample

of 15 participants. Eleven of the participants had over 2

years of industrial Java or Android experience, and 14 of the

participants had more than a year of industrial Java or Android

experience. Two participants were professional developers, and

13 were graduate students (12 with professional background).

For the ROS study, we collected a convenience sample of

12 participants. Nine of the 12 participants preferred the

C++ version of ROS over the Python version. Two of the

participants had more than 2 years of ROS experience and 5

of the participants had over a year of experience. Three of

the participants were research staff, 8 of the participants were

graduate students, and 1 was an undergraduate student. None

of the participants did both the Android and ROS study.

We made several procedure changes between the two case

studies. For Android, we gave participants time to learn the

application before attempting the tasks, while we did not

provide a learning period for the ROS tasks. We made this

change because we found that participants commonly spent the

Android learning period exploring sections of the application

that were not relevant to the tasks. In the Android study, we

required participants use the recommended Android Integrated

Development Environment (IDE), AndroidStudio, because it

provides warnings for directive violations. We did not require

participants to use any particular IDE for the ROS tasks,

because ROS does not have a recommended IDE.

E. Coding Process

To analyze the results of the human studies, we coded

the actions and statements of participants from our video

(participants’ screens during the trials) and audio (all audio
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from the trials) recordings. We followed an iterative, open-

coding practice based on techniques from Qualitative Content

Analysis [11] and Constructivist Grounded Theory [10]. We

made adaptations to the techniques, which are described for

interview-focused studies, to render them suitable for our

human trial method of data collection.

The iterative aspect of the coding process involved an-

alyzing recordings of the first few participants for impor-

tant concepts before conducting debugging trials with the

remaining participants. After analyzing the recordings from

these participants, we then conducted more debugging trials.

We alternated between conducting and analyzing trials, and

adjusted our coding frame based on the new trial results. As

recommended by Contructivist Grounded Theory, we tried to

reduce the impact of prior work on our coding process (to

avoid analyzing the data with a pre-determined code and thus

possibly bias the results) [10]. We thus limited our initial

reading of prior work to a few similar studies, and investigated

the rest of the related work after finishing the analysis.

Our coding process consisted of two different authors cod-

ing different aspects of the study. One author conducted and

coded the Android trials while another author conducted and

coded the ROS trials. We allowed the coding categories for

both the Android and ROS study to emerge independently,

although both were checked and guided by an expert in the

area of frameworks (an author), which led to variations in the

categories and granularity of the different coding categories.9

The Android coding categories consisted of six categories

that focused on the mental aspects of the debugging process
(‘deductions,’ ‘questions asked,’ with a subcategory of ‘hy-

pothesis creation,’ and ‘hypothesis rejection’) and the actions
that participants took (‘coding/testing actions,’ and ‘activities

taken to learn the framework or code base’). Finally, a

miscellaneous category included behaviors such as reading

the scenario specific prompt, or a participant expressing an

opinion (such as annoyance with the lack of documentation on

a topic). The ROS coding categories consisted of four major

categories: ‘goals,’ ‘activities,’ ‘learning,’ and ‘miscellaneous.’

Each category contained multiple sub-categories, for exam-

ple, the subcategories under ‘goals’ were ‘fix an identified

problem,’ ‘answer a question,’ ‘test a hypothesis,’ ‘find a

file,’ or ‘other goal’ (not included in the previous four). The

coding categories of both studies were refined over time. For

example, the Android coding categories initially contained

a ‘goal’ category, but this was eventually merged with the

‘questions’ category as participants often expressed goals in

question form.

One author then condensed the coding data from both

studies into the final categories of framework benefits and

challenges using theoretical sorting. There are multiple accept-

able approaches for theoretically sorting data in constructivist

grounded theory [10]. We choose to categorize the results into

9While our IRB approval prevents releasing the recorded trials, we have
released our coding categories along with our identity-scrubbed and coded
trial summaries to promote future researchers reproducing our results at
https://github.com/squaresLab/frameworkStudyTranscripts

the benefits and challenges of framework debugging, as this

frame provided the most insight.

III. FRAMEWORK DEBUGGING BENEFITS AND

CHALLENGES

We first present the challenges that developers faced while

debugging the tasks: those relating to dynamic behavior

(Section III-A), static structure (Section III-B), and histor-

ical changes to the framework (Section III-C). Next, we

present the benefits of framework debugging: dynamic benefits

(Section III-D), static benefits (Section III-E), and historical

benefits (Section III-F). Finally, we discuss the difficulty of

debugging violations in relation to their consequence category

as an inspiration for future work (Section III-G).

A. Dynamic Challenges

Throughout the study, participants struggled to determine

the order in which a framework executes application code,

which increased the difficulty of the debugging process. Par-

ticipants seem to prefer a cause and effect ordering. However,

framework code does not typically follow a sequential order-

ing, instead executing application code only when needed.

This requires code to be structured as non-sequential event

handlers. This can create uncertainty about which parts of

project-specific code are called and when, and which project

method will execute “next.” Object protocols exacerbate this

issue by requiring participants to understand which states

various objects can be in when the framework calls their code.

Inversion of Control. In framework programs, application-

specific method execution order is not always transparent to

the application developer. This sometimes led participants to

misunderstand an application’s control flow, which increased

the difficulty of locating the error and fix locations. For

example, in the ROS study, participants (PR18, PR20) assumed

the framework did not call a section of code, when instead

a problem in that code segment caused the application to

terminate earlier than expected. In Android, two participants

(PA10, PA11) tried to use the debugger to understand control

flow, but struggled to do so. Both participants stepped past

an application method and were unable to figure out how to

step back into non-framework code. This led participant PA10

to reach incorrect conclusions about which code executed in

task TA7. In ROS, while trying to understand how two nodes

communicated, PR22 did not realize that a third node linked

two other nodes, because the nodes relied on the framework

to handle communication. Participant PR22 read four files

before understanding how the framework routed the nodes’

communication. Another participant (PR23) made incorrect

control flow deductions due to the way ROS redirects and

filters statements printed to standard output.

Inversion of control also made localizing errors difficult. In

Android, one participant (PA5) searched for an error message

thrown by the application, but could not find it in the project.

The search failed because the error message was generated

from core framework code, not project code.
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Some problems stemmed from participants’ uncertainty

about the hidden ordering of critical framework activity

between events. When participants (PA4, PA12) saw the

getActivity call returned NULL, they questioned whether the

framework had incorrectly constructed its own reference to the

parent Activity. In fact, getActivity was called in an event

that occurred before the framework had attached the Activity

to the Fragment.

Takeaway: The inversion of control in frameworks increases

the difficulty of understanding the application’s control flow,

which increases the difficulty of debugging the application.

Object Protocols. Object protocols are object states that

dictate how an object can be used. An example of object

protocols in Android are lifecycles: state transitions between

starting, active, and stopping for components. Participants

experienced challenges with object protocols (e.g., accessing

values before they were set). Object protocols are explained

and diagrammed explicitly in the documentation, but imple-

mented indirectly in the framework code, and invisible to

non-framework code. This likely increases the difficulty of

understanding the relevant object protocols.

Object protocol issues in tasks TA4 and TA5 significantly

contributed to the amount of time those tasks took (see Sec-

tion III-G). Most participants assumed the application had per-

formed an invalid action, rather than that an action that was in-

valid only in a given state. Object protocol misunderstandings

also led participants to incorrectly conclude that certain values

were available for application use. Three participants (PA4,

PA6, PA11) mistakenly wrote code to access variables storing

user selections before the user could have selected them. Par-

ticipants were then confused when the accessed values did not

match those they selected in testing. Participants (PA6, PA10)

were confused about the circumstances in which they needed

to commit and finalize a Fragment transaction (as opposed to

the cases in which transactions were automatically committed).

PA1 expressed exasperation on the difficulty of keeping track

of when methods were called “You look at the Fragments

documentation and it's like lifecycles inside of lifecycles inside

of other lifecycles. It's annoying. It's like, how do I keep track

of all this?” In the ROS study, participant PR26 mentioned

uncertainty about how to modify a method because of the

states the application could be in when that method was called.

Takeaway: The way frameworks hide object protocols

causes problems when diagnosing the problem location and

when producing the correct fix.

B. Static Challenges

The static structure of frameworks, such as declarative

artifacts and the mapping between source files and executable

components, presented multiple challenges to participants.

Participants commonly struggled to understand the separation

between static structure and dynamic changes, determine the

effects of the application’s static configuration, and use that

knowledge to solve problems. This led to uncertainty about

whether errors should be addressed by modifying static files,

or via a dynamic solution. Participants also often struggled

with determining the correct framework terminology for their

situation, which increased the difficulty of finding related

documentation and online solutions.

In ROS, participants had difficulty understanding how

source files map to executable components, partially because

ROS executables consist of various components (Nodes, Ser-

vices, and Topics) that do not map directly to source. ROS

also does not provide an easy or well-known way to find

source code corresponding to a given component. Participant

PR16 struggled to understand how the publisher and subscriber

methods in the C++ files integrated with the data redirections

in the launch file. Other participants (PR17, PR18, PR20,

PR22, PR25, PR27) similarly struggled to understand how the

application remapped data between components. In one case,

Participant PR17 diagnosed the problem but struggled to find

the appropriate source file, due to both the organization of the

ROS application files and their confusion about how to use the

ROS filesystem commandline tools: “I am looking for source

code for [this node]. . . Unfortunately ROS is trying to isolate

me from the file system, which I dislike, because it cannot

isolate me fully.” Some 16 minutes into the task, Participant

PR17 exclaimed “This is ridiculous, I can’t even find the code

that I am supposed to be debugging!” They eventually used

grep to find a node, more than half an hour into the task.

Multiple participants were confused about which framework

concept applied to the current task. For example, both TA3

and TA6 asked participants to add an OptionsMenu to the

application. Participants were given an application were the

OptionsMenu did not appear and a picture that showed the

application’s OptionsMenu. Participants were asked to fix the

problem in the application so that the OptionsMenu appeared.

Android’s OptionsMenu appears on the ActionBar but is not

managed by the ActionBar class directly. At the beginning of

the task PA9 commented “I believe that is probably related to

the ActionBar, because I think that is where the user defined

menus can go.” PA9 ended up performing three different

searches related to icons in the ActionBar which all initially

looked promising to the participant but were ultimately un-

successful. The participant’s fourth search, linearlayout action
bar, found a site that directed the participant to add the options

through the OptionsMenu and lead to a successful completion

of the task. PA1, PA2, PA3, PA9 all demonstrated difficulty

determining the correct framework terms and concepts related

to the issue.

Participants in the study were often unsure if changes to the

application were performed dynamically with method calls or

statically with adjustments to options in a declarative artifact,
such as the XML layout specifications in Android. In the

same tasks (TA3 and TA6), many participants (PA9, PA13,

PA14, PA15) were initially confused if the OptionsMenu was

added through a declarative artifact or through a method call.

These participants looked through the Android layout editor

for an OptionsMenu or tried to add an OptionsMenu to a

XML file, before realizing that it must be added dynamically.

Another participant (PA9) investigated the strings.xml file

after an online answer suggested that the problem may lie in
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an undefined icon title. Participant PA10 remembered that a

specific theme could cause errors and checked if the theme

caused the error.

Takeaway: Unclear mappings between declarative artifacts

and the application’s source code provides a source of debug-

ging difficulty.

C. Historical Challenges

The fact that frameworks change over time can increase the

difficulty of debugging framework errors: both participants’

knowledge and online help or solutions may be out of date.

Legacy Challenges. Previous versions of both Android and

ROS created issues for several participants. In Android, one

participant (PA9) questioned whether a feature should be

implemented in a backwards-compatible way, later discov-

ering that the application was not configured to work with

backwards-compatible components. A few participants (PA8,

PA9, PA14) avoided online answers older than two years

because they assumed they would no longer apply. Other

participants (PA1, PA15) mentioned they were familiar with

Android a couple years ago, but there had been many changes

to the framework since they were proficient with it.

Some ROS participants incorrectly diagnosed the obsolete

message type in task TR2 as correct because they had used it

previously. Participant PR21 recognized that the message type

caused an issue, searched the message type online, and found

its official documentation, not realizing that the documentation

was for an older ROS version. This was a problem because the

documentation indicated that the file was using the message

type correctly. The participant investigated four other possible

error sources before realizing that a different message type

was needed.

Past Experience. While past experience was often helpful,

one participant in the Android study (PA10) misdiagnosed an

error message due to previous experience. This caused the

participant to conclude to “not trust your experience.”

Takeaway: Out-of-date knowledge about a framework and

similar error messages that cause developers to incorrectly

diagnose the problem increase the difficulty of debugging

framework applications.

D. Dynamic Benefits

Throughout the study, participants commonly used the

framework to perform actions that would have been much

more difficult to recreate without the help of the framework.

When faced with a task, almost all participants tried to imple-

ment the correct, prescribed framework method for performing

the required action (although PA1, PA3, PA5, PA8, and PA11

implemented custom solutions for certain tasks, such as im-

plementing a custom message passing solution in TA1). For

example, PA6 in TA1 correctly used the FindFragmentById

method to access user input, instead of writing code to pipe

the data through the application. Overall, developers can take

advantage of the benefits that framework methods provide.

Takeaway: Frameworks provide methods to address com-

mon task in a framework application. These methods can

decrease the difficulty of implementing a bug fix.

E. Static Benefits

Study participants found the static organization of the

framework helpful when trying to gain an overview of the

application, which helped them find files of interest more

easily than through unstructured search. In ROS, participants

used the launch files as a way to start exploring the applica-

tion. For example, participant PR27 looked through the ROS

launch files to understand which nodes were involved in the

application. Participant PR26 mentioned that they liked to use

launch files to get an overview of the application. Multiple

participants (PR17, PR18, PR19, PR22, PR26, PR27) used

the launch files as a table of contents, using them to determine

application components, how they interact, and locate source

files of components.

Similarly, in Android, participants (PA1, PA2, PA3, PA6,

PA8, PA9, PA10, PA11, PA13, PA14, PA15) used the structure

of Android application to quickly find resource files and test

case files. For example, PA8 was able to quickly look up the

correct options menu layout file when writing the required

options menu code. None of our tasks required participants to

resolve bugs in declarative artifacts, so it’s possible that this

type of problem would be especially easy to debug.

Takeaway: The common structure of frameworks applica-

tions reduce the time to find necessary information when

debugging.

F. Historical Benefits

Participants often found that past experience was helpful;

some were able to correctly diagnose a ROS error simply

by looking at the failing section of code and relating it

to code or problems they had seen before. Multiple ROS

participants (PR17, PR21, PR26, PR27, PR28) were able to

diagnose an error and suggest a working alternative based

on past experience. While working on task TR2, participant

PR28 noticed the error in the code and said, “I think the

fact that there’s a beginning slash means that instead of

looking under this node’s namespace it’s gonna look under

the global namespace [where] this parameter doesn’t ex-

ist.” The participant was correct. Detailed knowledge of a

framework, built up by through experience, can help mitigate

barriers frameworks impose. Other participants (PR18, PR22,

PR26, PR27) stated that past experience shaped their general

ROS debugging strategy. One participant remembered to set

framework environment variables, attributing past environment

problems. Another participant (PR26) always used grep to

find calls to a function modified over the course of a debugging

session, to guard against unforeseen side effects, a problem

they had faced in the past.

Takeaway: The common elements of applications created in

a framework allows developers to build debugging experience

in the framework.
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Violation Time Sessions Sessions Success
Consequence (Mean) Completed Attempted Rate (%) Tasks

1. Android: Wrong Value Returned 51 min 4 5 80 TA1
2. Android: Crash With Reference To Directive 47 min 3 9 33 TA4, TA5
3. Android: Missing Feature 28 min 4 8 50 TA3, TA6
4. Android: Tool Warning 23 min 6 6 100 TA2
5. Android: Crash Without Reference To Directive 19 min 4 5 80 TA7
6. ROS: Missing Feature 49 min 5 8 63 TR1
7. ROS: Wrong Value Returned 36 min 5 8 63 TR2
8. ROS: Compiler Error 25 min 6 6 100 TR3

TABLE III: Mean time on task and task completion rate, by consequence. Time on task includes failed attempts.

Fig. 2: Time spent per task. Timing includes failed attempts.

G. Difficulty By Consequence

We analyzed participant results from both the Android and

ROS tasks using the consequence categories collected from

the Android investigation. We validated these categories by

creating ROS trials and found that all of the ROS directive

violation consequences fit into previously created categories.

While we did not perform enough trials of each task for statis-

tical significance, the results from the trials provide insight on

the difficulties between the tasks, which is useful for directing

research towards the tough framework problems. We present

the time participants spent on each task and the participant

success rate on each task in Table III. The time participants

spent on each violation category is presented as a number not

to represent a precisely measured time for the task, but to

present a better sense of the data than descriptive terms (i.e.,

much longer, longer, about the same, shorter, much shorter).

Figure 2 shows a box-and-whisker plot of the participant’s

time spent on the tasks in the study. There was a substantial

difference in the mean time to complete tasks (ranging from

19 to 51 minutes) and the success rate on tasks (ranging from

33% to 100%) of difference consequences.

The consequence of violating a directive appears to influ-

ence how long it takes to debug the error as well as how likely

a developer is to succeed in doing so over a short debugging

session. A surprising result compared to prior research on

debugging is that participants had significant difficulty with

finding a fix once they were aware of the problem location.

As an example of prior research in this area, Vessey [20] found

that fault localization often took longer than finding the fix.

However, developers who worked on the tasks in Android:
Crash With Reference To Directive category were notified of

the fault location immediately, yet this category had one of the

longest mean times. Even for other tasks that participants were

immediately notified of the fault location, participants did not

immediately determine the correct fix, often taking 20 or more

minutes (TA2, TA4, TR3). In these cases, participants knew

that certain directives were violated but they did not know

how to fix the error. Participants found this frustrating, with

one participant stating “Why don’t they [the documentation]
tell me the right thing to use? They tell me it is going to cause
a problem but they don’t tell me what the alternative is.”

Takeaway: We observe that it appears important not only to

notify developers of directive violations but also to help fix

directive violations explicitly.

IV. LIMITATIONS

External Limitations. We attempt to mitigate the risk that our

results will fail to generalize to other frameworks or languages

by investigating two different frameworks and a wide range

of framework debugging problems. We have probably not

discovered all of the benefits and challenges of framework

debugging (or Android and ROS debugging), but we have re-

duced this risk by first investigating the space of error presen-

tations that developers face (the consequence categories) and

then investigating those categories in-depth with the human

trials. Our categorization of framework directives by violation

consequence may not generalize (e.g., other frameworks may

not have recommended development tools), and it may be

incomplete; in particular, we did not consider potential non-

functional violation effects, such as degraded performance.

The lack of completeness could motivate future work.

Our constructed tasks may not represent solving real-

world debugging issues. This concern was reduced by basing

the Android tasks on StackOverflow questions. Additionally,

participants were new to the code in each task, possibly

leading to unrealistic code familiarity problems. We sought

to reduce this threat by providing Android participants with a

learning period, but we note that, for example, one participant
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mentioned that it would be preferable to spend a day reading

documentation before tackling the tasks. As such, time limita-

tions may have influenced our results. Finally, the participants

in the study may not represent the population of framework

users, and instead might be biased by the large number of

student participants. We attempted to address this limitation

by recruiting participants with framework experience: 14 of

the Android study participants had over a year of industrial

Android or Java experience and 7 of the ROS participants had

over a year of ROS experience. It is likely that our results

represent the challenges of developers that are moderately

skilled in the framework, and may not apply to multi-year

experts. The sample sizes of both number of trials in each

category and number of tasks in each category are too low of

a sample size to draw conclusions with statistical significance.

While important in certain cases, our goal was to perform a

qualitative-exploratory study, where statistical significance was

not a primary concern (goal was to determine what problems

developers have instead of how often these problems occur).

Achieving statistical significance with number of tasks or

participants is left to future work.

Internal Limitations. Participants could freely decide, in a

low-risk situation, when to quit a task. Participants were

also asked to think-aloud, and prompted to do so by the

researcher. These prompts may have altered the approach a

participant would have taken absent the prompt. The think-

aloud component may affect how long participants took to

solve the tasks. We believe that this affected tasks roughly

equally, such that tasks which took significantly longer than

the others are likely to have taken longer in a non-think-

aloud context. While the size of the different problems were

restricted to directives, the amount of code required to fix

the directive was not consistent across all tasks. However,

all tasks could be fixed with ten additional lines or less.

Finally, some participants mentioned they would have been

more comfortable if the researcher were not watching, and if

they were able to use their preferred IDE, OS, or laptop. These

irritants may have caused participants to perform differently

than they would have in their preferred environment.

V. RELATED WORK

Frameworks and APIs. Ko et al. [2] investigated the chal-

lenges that new end-user programmers face (using a frame-

work application as their study subject). They identified learn-

ing barriers which summarize broad challenges in this domain,

design barriers and use barriers. We expand on this prior

work by focusing on and expanding the subset of challenges

that apply to framework debugging specifically, and do not

restrict our attention to end-user or novice programmers.

Other prior work has created formal specifications for frame-

work plugins [21], [22], statically analyzed declarative arti-

facts [23], looked through StackOverflow to find framework

problems [24], and patterns that appear in framework develop-

ment [5], [6]. Another study that investigated StackOverflow

questions on frameworks found that developers had difficulty

determining the correct framework term (as we found in

our study)[25]. To the best of our knowledge, none of this

prior work specifically addresses the process of debugging of

framework applications.
Multiple studies have found that API design decisions

can significantly impact programmer effectiveness [26], [27],

[28], [29]. Our study investigates the challenges developers

encounter when using framework APIs. Our results, while

not focusing on design decisions directly, can help guide

framework designers away from the usability problems we

uncovered. Others have found that API changes lead to appli-

cation problems, when developers do not keep applications up-

to-date with API changes [30], [31], and investigated patterns

in API updates [32]. This prior work focuses on the challenges

of updating applications to conform to API changes, instead

of the problems caused by out-of-date knowledge of how to

use the API.

Information Needs. With respect to eliciting information

while programming and debugging, developers have a wide

range of documentation preferences [33]. They search the web

in multiple styles [34] and use keywords in bug reports as a

guide when searching through source code for maintenance

tasks [35]. Developers use more sources of documentation

during maintenance tasks [36] and want rationale for changes

during code review [37]. Our study expands the community’s

knowledge of information foraging in framework application,

by discussing the challenges developers face when the required

information is more fragmented (as in the user written appli-

cation and the internal framework code).
Ko et al. [1] investigated how developers collect informa-

tion during software maintenance, focusing in particular on

applications built against libraries (rather than in a framework

context). As in our study, developers debugging library-based

applications often searched for sections of code that seemed

relevant to the failure, either based on keywords or nearby

functionality. However, because method call ordering is not

easily viewable inside a framework application, participants

in our study would sometimes fail with this strategy, missing

relevant code. For example, in TA4, participants often spent a

long time investigating the OtherMetadataFragment (usually

over 20 minutes) before moving to investigate the rest of the

application, likely because they could not easily understand

how the rest of the code was connected to the error location.

Our findings imply frameworks can add extra complexity to

the debugging process as compared to debugging standard

library-based applications.

Directives. Prior work has focused on how to classify direc-

tives [16], [8], [38], found directive knowledge is helpful dur-

ing development [16], [8], investigated the prevalence of types

of directives [39], fixed mistaken directive documentation

using source code [40], and found that directives can be used to

answer a sample (16/20) of StackOverflow questions [41]. We

expand on this prior knowledge in our focus on the challenges

involved in debugging directive violations.

Debugging and debugging theories. Previous studies have

investigated what developers want to know when debugging
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(including dataflow and references to the problematic section

of code) [42], [43], [44]. Others have investigated mainte-

nance tasks in machine learning [45] and cloud deployment

software [46]. Additional studies have focused on how design

decisions are handled in the repair process [47], how develop-

ers use scent finding to locate the fault [3], and how tasking

developers with fixing or learning about a bug lead to different

navigation behaviors [18]. Our study builds upon these results

by qualitatively investigating the unique debugging challenges

in a framework application context.

Recent research has demonstrated the importance of the

types of bugs investigated in our study by, e.g., examining

framework-specific errors in Android applications [48] or

proposing to automatically repair crashing Android applica-

tions [49]. We build upon such work by investigating the

challenges that developers face when manually repairing these

common issues.

Prior debugging theories break the debugging process into

high-level stages [50], [51], [52]. More recent work further

describes the actions in the information gathering process of

debugging [1], [53]. These processes apply to our results but

do not include framework-specific challenges.

VI. CONCLUSIONS

We have presented qualitative insights from framework

directive debugging scenarios, and the challenges found in

framework debugging, such as the difficulty of understanding

method call ordering. While these insights and challenges are

not necessarily framework specific, they occur while debug-

ging frameworks and are likely more prevalent in framework

debugging than other contexts. During this study, we also

looked into the difficulty of solving various directive violations

by consequence and found one of the most surprising results

from our study: that fixing directive violations is more complex

than identifying the fault location. Thus, developers need to be

both aware of directive violations and possible fixes to quickly

address these issues.
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[44] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the bug and how is it fixed? an experiment with
practitioners,” in Foundations of Software Engineering, ser. ESEC/FSE
’17, 2017, pp. 117–128.

[45] T. Kulesza, S. Stumpf, M. Burnett, W. K. Wong, Y. Riche, T. Moore,
I. Oberst, A. Shinsel, and K. McIntosh, “Explanatory debugging: Sup-
porting end-user debugging of machine-learned programs,” in 2010
IEEE Symposium on Visual Languages and Human-Centric Computing,
2010, pp. 41–48.

[46] C. Lebeuf, E. Voyloshnikova, K. Herzig, and M.-A. Storey, “Under-
standing, debugging, and optimizing distributed software builds: A

design study,” in International Conference on Software Maintenance and
Evolution, ser. ICSME ’18, 2018, pp. 496–507.

[47] E. Murphy-Hill, T. Zimmermann, C. Bird, and N. Nagappan, “The
design space of bug fixes and how developers navigate it,” IEEE
Transactions on Software Engineering, vol. 41, no. 1, pp. 65–81, Jan
2015.

[48] L. Fan, T. Su, S. Chen, G. Meng, Y. Liu, L. Xu, G. Pu, and Z. Su,
“Large-scale analysis of framework-specific exceptions in android apps,”
in International Conference on Software Engineering, ser. ICSE ’18,
2018, pp. 408–419.

[49] S. H. Tan, Z. Dong, X. Gao, and A. Roychoudhury, “Repairing crashes
in android apps,” in International Conference on Software Engineering,
ser. ICSE ’18, 2018, pp. 187–198.

[50] J. D. Gould, “Some Psychological Evidence on How People Debug
Computer Programs,” International Journal of Man-Machine Studies,
vol. 7, no. 2, pp. 151 – 182, 1975.

[51] I. R. Katz and J. R. Anderson, “Debugging: An analysis of bug-location
strategies,” Human-Computer Interaction, vol. 3, no. 4, pp. 351–399,
Dec. 1987.

[52] V. Grigoreanu, M. Burnett, S. Wiedenbeck, J. Cao, K. Rector, and
I. Kwan, “End-User debugging strategies: A sensemaking perspective,”
ACM Transactions on Computer-Human Interaction, vol. 19, no. 1, pp.
1–28, 2012.

[53] T. D. LaToza, D. Garlan, J. D. Herbsleb, and B. A. Myers, “Program
comprehension as fact finding,” in Symposium on The Foundations of
Software Engineering, ser. ESEC-FSE ’07, New York, NY, USA, 2007,
pp. 361–370.

579


