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Abstract—When code is compiled, information is lost, including
some of the structure of the original source code as well as
local identifier names. Existing decompilers can reconstruct
much of the original source code, but typically use meaningless
placeholder variables for identifier names. Using variable names
which are more natural in the given context can make the code
much easier to interpret, despite the fact that variable names
have no effect on the execution of the program. In theory, it
is impossible to recover the original identifier names since that
information has been lost. However, most code is natural: it is
highly repetitive and predictable based on the context. In this
paper we propose a technique that assigns variables meaningful
names by taking advantage of this naturalness property.

We consider decompiler output to be a noisy distortion
of the original source code, where the original source code
is transformed into the decompiler output. Using this noisy
channel model, we apply standard statistical machine translation
approaches to choose natural identifiers, combining a translation
model trained on a parallel corpus with a language model trained
on unmodified C code. We generate a large parallel corpus
from 1.2 TB of C source code obtained from GITHUB. Using
this technique we were able to successfully recover the original
variable names 12.7% of the time and approximate variable
names 16.2% of the time.

I. INTRODUCTION

Developers expend a great deal of effort and consideration
to select meaningful variable names, and for good reason.
It has been shown that well-selected variable names make it
significantly easier to understand code [1], [2]. Identifier names
provide context to abstractions in high-level programming
languages such as functions, loops, and classes, which allows
developers to understand the function of these constructs eas-
ier. However, despite the human effort that goes into making
source code readable, e.g., by choosing meaningful identifier
names, much of this readability is lost during compilation: as
high-level abstractions are transformed to low-level sequences
of instructions by a compiler, both the structure of the code
and the carefully-chosen identifiers are lost.

The loss of variable names during compilation is typically
not a concern when the original source is available, but this
is not always the case. Commercial software vendors and
malware authors alike often distribute their software in exe-
cutable form without including the original source code. As a
result, a class of analysts known as reverse engineers specialize
in reading and understanding a program’s behavior from its
executable to analyze malware [3]–[5], discover software vul-
nerabilities [3], [6], [7], or patch bugs in legacy software [6],
[7]. Historically, reverse engineers were often forced to “read”

executable programs at the assembly code level. More recently,
reverse engineers have been using decompilers, which attempt
to reverse the compilation process by recovering information
about the original program’s variables, types, functions, and
control flow structure, representing this information in a source
code language such as C.

It is generally accepted that reverse engineers understand de-
compiler output more readily than they do assembly code [4],
[6], [7]. Some modern decompilers are even explicitly de-
signed to produce readable and understandable code [4].
However, significant readability challenges remain. First, de-
compilers produce code that is largely not idiomatic of what
humans would produce. Decompilers often transform code
originally written using one abstraction into a different, but
semantically identical abstraction. The result is often not as
natural to humans (e.g., struct member references like x.e
may be transformed to array accesses of the corresponding
member offset x[4]). Second, current decompilers make no
attempt to recover or suggest meaningful identifier names;
instead, they assign generic variable names, like v1 and v2.

Figure 1 provides an illustrative example of these chal-
lenges. Figure 1a shows the original source code for function
xmlErrMsgStr, while Figure 1b and Figure 1c show the
decompiler output and the decompiler output renamed by
our technique, respectively. The variable names highlighted in
yellow are lost during compilation. The true names for these
variables, a1 through a4 respectively, were ctxt, error,
msg, and val. Our approach exactly recovers error, msg,
and val, and approximately recovers ctxt, assigning it
the name ctx. The variable highlighted in red, v5, is an
extraneous variable generated by the decompiler which does
not appear in the original source code, and yet the system still
proposes a reasonable name for it, status.

In this paper, we show that it is possible to recover natural
variable names in decompiled source code, and in some cases,
to even recover the original names. Although it may seem
like recovering meaningful identifier names in decompiled
source code is impossible since the original names are “lost”
during the compilation process, recent work [8]–[11] has
shown that because code is natural [12], i.e., highly repetitive
and predictable based on context, it is possible to assign
natural names to identifiers in programs by learning names
that developers have assigned to code used in similar contexts.

Our work is inspired in part by the JSNICE [9] and
JSNAUGHTY [10] projects, which leverage the naturalness of



1 void xmlErrMsgStr(xmlCtxt ctxt , xmlErrs error ,
2 const char *msg , const xmlChar *val ) {
3 if ((ctxt != 0) && (ctxt->instate == -1))
4 return;
5
6 if (ctxt != 0)
7 ctxt->errNo = error;
8
9 _raiseError(ctxt, error, msg, val);
10 }

(a) Original source code.

1 int xmlErrMsgStr(uint32 *a1 , int a2 ,
2 const char *a3 , int a4 ) {
3 int v5 ;
4 if ((!a1) || (v5 = a1[43], v5 != -1)) {
5 if (a1)
6 a1[21] = a2;
7 v5 =
8 _raiseError(a1, a2, a3, a4);
9 }
10 return v5;
11 }

(b) Original decompiled code, with uninformative variable names.

1 int xmlErrMsgStr(uint32 *ctx , int error ,
2 const char *msg ,
3 int status ;
4 if ((!ctx ) || (status=ctx[43], status!=-1)) {
5 if (ctx)
6 ctx[21] = error;
7 status =
8 _raiseError(ctx, error, msg, val);
9 }
10 return status;
11 }

(c) Suggested natural variable names.

Fig. 1: Illustrative example (simplified for presentation). Vari-
ables highlighted in yellow are lost during compilation and
then recovered by our system. v5, highlighted in red , is an
extra variable introduced during (de)compilation, for which
our technique can suggest a more natural name (status).

code to recover meaningful variable names in JavaScript code
that has been intentionally mangled by obfuscation tools such
as UGLIFYJS.1 Although decompiling a program is not a form
of program obfuscation, the resulting code is similar: in both
cases, the mangled program is stripped of its original variable
names, i.e., it is minified, but it is structurally and semantically
similar to the original. The natural question we address in this
paper is whether similar techniques can be used to recover
meaningful variable names for decompiled code.

Similarly to JSNAUGHTY [10], we also treat the problem
of recovering meaningful variable names in decompiled code
as an instance of the “noisy channel” model used in natural
language translation (e.g., French to English). We therefore
also base our solution on statistical machine translation (SMT).
SMT is data-driven, using statistical models of language trans-
lation estimated from large, parallel (i.e., sentence-aligned)
corpora of text in the source and target languages.

The main challenge with applying SMT in this context is

1https://github.com/mishoo/UglifyJS

the generation of the parallel, line-by-line aligned training
corpus. In both cases, minified JavaScript in the JSNAUGHTY
work and decompiled code in our work, arbitrary amounts
of training data can be generated as long as one has access
to the “obfuscator” (the JavaScript minifier, or the sequence
of compiler and decompiler, respectively), starting, say, from
open-source source code and transforming it as needed. How-
ever, the JavaScript minification in the JSNAUGHTY work is a
simple α-renaming of the original code, therefore constructing
a line-by-line aligned training corpus for the SMT model is
effortless. In the case of decompilation, there is not always a
one-to-one mapping between variables. As exemplified by v5
in Figure 1b, decompilers may generate non-idiomatic code,
as well as extra variables that do not have a correspondent in
the original source code.

Our contributions in this work are twofold: (1) we show
that it is possible to automatically generate an aligned parallel
corpus of natural C code and C code generated by decompiling
binaries, using simple alignment heuristics; (2) we train and
evaluate an SMT model that can suggest natural variable
names in decompiled C code, based on the open-source SMT
toolkit MOSES [13], commonly used in natural language trans-
lation. This demonstrates that SMT techniques can be used for
information recovery even when the difference between the
original source code and the transformed source code is more
complex than simple α-renaming of variable names.

The rest of this paper is structured as follows. In Section II
we provide background on SMT and decompilation necessary
to understand our contribution, focusing on the challenges that
apply to using SMT to rename variables in this new context.
We outline our approach in Section III. Section IV describes
the experiments we conducted to validate our approach, in-
cluding the accuracy of our novel alignment technique; the
accuracy of translation overall; and the impact of including
additional information in the translation process on renaming
results. Section V puts our contribution in context with respect
to related and prior work. We conclude in Section VI.

II. BACKGROUND

Our technique uses SMT, or statistical machine transla-
tion [14], to assign meaningful names to variables in de-
compiled C code. This section therefore provides background
on SMT (Section II-A) and decompilation (Section II-C)
respectively, focusing on the particular challenges that apply
in our domain.

A. Statistical Machine Translation

SMT is a technique that translates between two languages
by estimating statistical models from a large, aligned, bilingual
corpus. SMT was originally developed to translate between
natural languages, but it has since been adapted to the trans-
formation of programming languages. For example, attempts
have been made to use SMT to translate between two C# and
Java [15], [16], generate pseudo-code from source code [17],
improve code completion tools [18], and reverse certain un-



desirable program transformations, such as obfuscation of
JavaScript programs [10].

In SMT, to translate, e.g., a French sentence f into an
English sentence e, one learns a probability distribution p(e|f)
from an aligned parallel corpus. and tries to find the most
likely translation by determining the sentence e that maximizes
the value of p(e|f). In a similar way, we can view a line of
code e with natural variable names as a translation of a line
of decompiled code with uninformative variables f , and use
SMT to determine the e that maximizes p(e|f).

SMT is based on the noisy channel model, where each
phrase in the source language f is assumed to be a distortion
of a phrase in the target language e (e.g., compiling and
decompiling the program). The model does not explicitly
specify the reverse transformation from f to e, so one cannot
directly calculate and maximize p(e|f). Instead, using the
Bayes theorem, one estimates:

argmax
e

p(e|f) = argmax
e

p(f |e)p(e)
p(f)

= argmax
e

p(f |e)p(e) (for a specific f)

This formulation is common in SMT. The two parts of this
equation are known as the language model (p(e)) and the
translation model (p(f |e)). In our case, the language model
captures the probability of n-grams in natural C code (pre
compilation and decompilation), which can be estimated from
a corpus of such code, while the translation model captures
the probability of different “phrases” (sequences of tokens, not
necessarily consecutive, within each line) in decompiled code
being “translations” of the pre compilation and decompilation
C code, which can be estimated from a line-by-line-aligned
parallel corpus. Compared to JSNAUGHTY, the latter corpus
is more challenging to generate in our case, given the distinct
ways that compilation and decompilation transform code.

B. Decompilation

A decompiler is a program that takes a compiled program
as input and outputs high-level source code that describes
the compiled program [6]. There are decompilers for a wide
variety of compiled and source languages, but in this paper we
focus on executable to C decompilers [3], [4], [6], [7] due to
the ubiquitity and complexity of executable code. We employ
Hex-Rays2 — a commercial x86 and x86-64 to C decompiler
popular among reverse engineers — as an exemplar, but our
techniques are not specific to Hex-Rays and should work with
any decompiler.

C. Decompilation SMT Challenges

Although C decompilers are generally able to recover some
amount of information about functions, variables, types, and
control flow structure [6], even state of the art decompilers
struggle to produce idiomatic C code. For example, in Fig-
ure 1b, Hex-Rays fails to recover the xmlCtxt structure type
and instead represents it as a pointer to uint32. As a result,

2https://www.hex-rays.com

Hex-Rays crudely translates accesses to the structure (i.e.,
ctxt->instate) into array dereferences (i.e., a1[43])
that a human programmer would be unlikely to write.

Unfortunately, as we show in Section IV-C, non-idiomatic
decompilation complicates the use of SMT techniques for vari-
able renaming. The most natural way to produce a parallel cor-
pus would use the original (i.e., human written) C code as the
“English” language in the aligned corpus, and then α-rename
source variables to names similar to those used by decompilers
(e.g., v1, v2, etc.) to create the “foreign” language. Because
human programmers are unlikely to write non-idiomatic C
code, this α-renamed corpus, while simple to construct, ul-
timately contains few examples of how to name variables
used in non-idiomatic contexts. This results in an SMT model
that is unable to recover variable names when the decompiler
produces non-idiomatic C code (which is quite often).

Another seemingly natural way to construct a parallel
corpus is to incorporate the original variable names into the
decompiled source code, and use the result as the “English”
language. Indeed, many decompilers, including Hex-Rays,
leverage debugging symbols when they are available (e.g.,
when decompiling code compiled with gcc -g) to name
variables in their output. Unfortunately for our purposes, de-
compilers use debug symbols (when available) in many ways
throughout decompilation. Specifically, debug symbols include
type information, which can be used to precisely type complex
variables (e.g., to properly type a1 in Figure 1b). As a result,
Hex-Rays generates different code in the presence of complex
types when using debug symbols than it does on ordinary, non-
debug executables. This again creates a mismatch between the
decompiled output of our target (non-debug) binaries and the
source language in the corpus.

Overall, we cannot leverage Hex-Rays directly to automati-
cally populate the original variable names into the decompiler
output. This motivates a method for aligning the variables in
the decompiler output with those in the original C code in a
decompiler-agnostic way. Such a method allows us to generate
an aligned corpus that is suitable for our application of SMT
because it more closely represents decompiled code. It also
provides a ground truth for evaluating the effectiveness of
our overall system. We describe how we construct such an
alignment procedure in the next section.

III. APPROACH

Figure 2 provides a high-level overview of our approach
to recover meaningful variables names in decompiled C code.
The user decompiles a binary using a decompiler (Hex-Rays
in our case). The decompiled code is then optionally pre-
processed with a hash-renaming optimization (Section III-C)
before being passed to an SMT tool. We use the off-the-
shelf SMT system MOSES [13] to train SMT models that
can rename variables. MOSES automatically estimates the
language and translation models given a sentence-aligned
(line-aligned in our case) parallel corpus [19]. MOSES then
outputs a possible translation of each line, which we then post-



Fig. 2: Overview of our technique for renaming variables in
decompiled source code

Fig. 3: Overview of our approach for generating an aligned
parallel corpus.

process to extract and assign the suggested variable names (cf.
Section III-B) in the renamed source code.

The quality of the aligned parallel corpus used by MOSES
to generate the language and translation models is central to
the performance of our renaming system. A naı̈ve approach to
generating a corpus suitable for learning a translation model
for variable renaming would simply rename the variables
in the original, human-written C code to names that would
have been generated by a decompiler. However, as discussed
in Section II-C, because decompilation substantively changes
the structure of code as compared to its original source,
the resulting translation model performs poorly. We instead
generate a corpus via a process of alignment.

A. Alignment

Training an SMT model requires a parallel corpus of aligned
content in the two languages between which the model should
translate. We produce the parallel corpus by relating the
variables in the decompiler output to their correspondents in
the original source. Note that perfect alignment is not always
possible: decompilers often generate extra variables that did
not exist in the original source code and often change the
code structure with respect to the original. Instead, alignment
represents our best guess for appropriate variable names in
decompiled code given the original source code.

Figure 3 shows the work flow of generating an aligned
corpus. First, we compile input C source code to executables
using the configuration scripts and Makefiles supplied with

each project.3 We decompile these executables using Hex-
Rays, which generates decompiled code. We then use our
alignment techniques (discussed shortly) to link names in the
decompiled code to names in the original source code. Finally
we combine this with the decompiled code, optionally hash-
renaming the decompiled code (Section III-C) to form the
parallel corpus. MOSES uses this corpus to estimate both the
language model and the translation model (see Figure 2).

When designing our alignment algorithm, we experimented
with different combinations of matching strategies and cost
heuristics, and found three different combinations that per-
formed best. We evaluated each of these three combinations
(here referred to as A, B, and C) to choose the best-performing
combination for our system (Section IV-B).

Each of these alignment algorithms starts by splitting the
code into functions. Splitting code into smaller sections makes
the process of alignment computationally tractable, but it
limits recovery to local variables. In our experience a vast
majority of variables are local, and their recovery provides
more information about the functionality of software than the
recovery of global variables.

1) Matching Algorithms: Each of the alignment methods
uses a core algorithm that chooses the best matching of
variables between two functions. These algorithms take as
input two lists of variables and a heuristic for computing the
cost of each specific pairing and find the set of matches that
minimizes the total cost. Method A treats variable matching
as an instance of the assignment problem, where any variable
in one list can be matched with variable in the other list. We
chose to use the Hungarian algorithm [20] for this approach.

Methods B and C both treat the problem of assigning
variable names in the original source code as an instance of
the sequence alignment problem [21, Section 3.2]. Given two
ordered sequences of symbols and a metric for scoring an
alignment between the two, sequence alignment algorithms
find the minimum cost (or maximum value) alignment between
them. Note that unlike the alignment problem, the ordering
of each sequence must be preserved. For example, given the
sequences ABAB and AAB, a cost function that assigns a
pairing a cost of 0 if matched symbols are the same character
and 2 if they are a different character, and a penalty of 1 for
an unmatched symbol, the alignment

A B A B

A A B

has a cost of 3, while the alignment

A B A B

A A B

has the minimal cost of 1. The sequence alignment problem
is common in biology when aligning multiple DNA or RNA
sequences that are billions of symbols long and may have gaps
or extra subsequences; as a result, many efficient algorithms

3We use open-source C projects from GITHUB, see Section IV-A.



1 // ints x and y previously declared
2 x = 1; // Usage Signature: =
3 for (;;){
4 y = x+1; // Usage Signature: {+
5 }
6 f(x,y); // Function Signature: f#1
7 g(y,x); // Function Signature: g#2
8 x = h(y); // Function Signature: h#return

Fig. 4: A small code snippet demonstrating usage and function
signatures for the variable x.

have been developed to address it. Alignment methods B and
C both use the Needleman-Wunsch algorithm [22].

Note that in all cases, the number of variables in the two
functions can differ, so the algorithms need to be able to
compute the cost of an unmatched variable, in addition to the
cost of a particular assignment. After parameter tuning, we
weight the cost of an unmatched variable by 3 for methods A
and B and 1 for method C.

2) Signatures and Cost Functions: We use two heuristics
as cost functions for alignments between variable names in the
original source code to those in the decompiled code. These
heuristics capture different properties of the variables used in
source code.

a) Usage Signature: This heuristic penalizes aligned
variables that appear to be used in different ways. Each
variable is assigned a usage signature, or a string of characters
that represents the variable’s use in unary and binary operators,
loops, and assignment. Each time a variable is used, a signature
for that usage is generated, consisting of a character represent-
ing the operation, and a sequence of characters representing
the current nesting depth.

As an example, we can look at the uses of the variable x
in Figure 4. The uses of x on lines 2 and 8 each have the
signature “=” (where the character = indicates assignment),
and the use of x on line 4 has the signature “{+” (where the
character { represents one level of nesting, and + represents
addition). These smaller signatures taken together serve as
the variable’s usage signature (thus, x as used above has the
signature “= {+ =”. We then compute the “distance” between
the usage signature of a variable in the original code and the
usage signature of a variable in the decompiled code.

Each of A, B, and C uses a different method to compute the
distance between two usage signatures. To illustrate, we will
demonstrate the distance between two strings strA = aabc
and strB = abcd.

Method A computes the distance between two strings as the
difference in the number of occurrences of each character in
both strings (i.e., the symmetric difference between the strings
treated as unordered character sets). Since strA has one more
a than strB , strB has one more d than strA, and both strings
have the same number of bs and cs, the distance between strA
and strB is 2.

Methods B and C compute the Levenshtein edit distance
(i.e., the number of edits required to transform one string
into another string) between the two signatures. Since the

second, third, and fourth characters must be changed in strA
to reach strB (changing a to b, b to c, and c to d respectively),
the distance between these two string is 3. When method
B computes the distance, it considers each of the smaller
signatures as a single unit and computes the number of smaller
sequences that need to be edited. Method C, treates each
character in the entire signature as a unit and computes the
distance with respect to single-character edits.

Each of A, B, and C multiply the computed distance by a
coefficient that was found to perform most effectively via a
parameter sweep. The coefficients for methods A, B, and C
are 1, 1, and 0.1, respectively.

b) Function Signature: This heuristic prioritizes aligned
variables that are used similarly in function arguments and
return values. We generate a function signature for each
variable, which records the function name and parameter
position for that variable. The function signature also captures
whether a variable is used to store a return value. We then
compute the distance between the signature for the original
source code and the decompiled code.

An example of the function signature can be seen in
Figure 4. The use of x as the first parameter in the function f
on line 6 has the signature “f#1”, while its use as the second
parameter in the function g on line 7 has the signature “g#2”.
On line 8, x’s use to store the return value of h generates the
signature “h#return”. Thus, the entire function signature of
x is “f#1 g#2 h#return”.

Methods A and B use the same distance metric for the
function signature as they used for the usage signature. Method
C treats each function signature as an unordered set of tokens,4

and computes the symmetric distance between signatures
(cf., method A). This outperformed Levenshtein distance. We
hypothesize that this is because uses in function arguments or
return values are salient, and the extra context provided by
ordering is not needed.

As before, each of the methods multiplies the computed
distance by a coefficient. The best coefficients for A, B, and
C after a parameter sweep are 5, 2, and 1, respectively.

B. SMT for Renaming Variables

To generate a candidate list of renamings given a trained
SMT model, the decompiled source code is fed into MOSES
line-by-line. Moses returns a list of possible translations for
each line. Our process extracts candidate identifier names from
the returned line and stores them as suggested new names for
each source variable. SMT tools do not have a mechanism
for ensuring that the translation of a single word is consistent
between sentences, since natural languages do not have the
same strict definition of scope as programming languages do.
For this reason we cannot simply replace each variable name
with the highest-ranked suggestion.

We instead adapt the following strategy proposed by JS-
NAUGHTY [10]. For each candidate renaming, we rename all

4We specify tokens here instead of characters because when computing
distances between signatures we treat function names and the return signature
as a single token, instead of a sequence of characters.



in-scope instances of the old variable in the current function.
We then select the most-probable renaming according to
the language model (Section II-A). This process is repeated
independently for all variables with at least one candidate re-
naming, assuming that all other variables remain un-renamed.
An alternative approach is to rename each variable sequentially
by greedily selecting the renaming that results in the most
likely code sequence given the renamings that have already
been selected. We suggest this for future work.

The translated version of a program with recovered vari-
able names should be an α-renaming of the variables, i.e.,
the structure of the program should otherwise be preserved.
Because different natural languages often have different word
orderings, SMT tools like MOSES do not necessarily pre-
serve structure. As such, MOSES can theoretically translate
one line of source code into a structurally different line of
code. However, because we want MOSES to only perform α-
renaming, we disabled options in MOSES that enable structural
transformations, and enabled an option that forces MOSES to
preserve the number of tokens during translation.

C. Hash Renaming

Hex-Rays assigns names to variables using a prefix and an
index (e.g., a1 and v5 in Figure 1). These names are merely
placeholders and do not convey any meaningful information
by themselves. For example, there is no meaningful difference
between for (int v1 = 0; v1 < 10; v1++) and its α-renamed
counterpart for (int v5 = 0; v5 < 10; v5++).

Since we do not wish MOSES to translate these two lines
differently, we can canonicalize variable names. The simplest
canonicalization would name all variables identically (e.g.,
v). However, this misses an important opportunity to encode
additional context about each variable. We can accomplish this
by replacing each variable usage in the decompiled source with
a hash capturing context. We capture three different kinds of
context when generating hashed names:

• Type: The variable is renamed to a hash of its type.
• Argument Position: Variables that are introduced as

formal parameters in a function are renamed with a hash
of their argument position. Argument order is generally
preserved by the compilation process, and Hex-Rays
attempts to recover the original order of arguments in the
decompiled code. However, we do note that argument
order may be changed in the presence of advanced
compiler optimizations (e.g., link time optimizations),
though we did not employ these in our current work.

• Most Informative Line: The variable is renamed to
a hash of the highest-entropy line that it appears in,
excluding lines with entropy above a certain threshold
(because they are unlikely to reappear in the corpus). The
entropy of a line is computed from a language model that
was trained when all variable names were renamed to a
fixed string. This allows us to measure whether the line
itself is interesting, regardless of the variable names.

These optional hashing strategies are independent and can be
combined in arbitrary combinations. We evaluate the perfor-
mance of all eight combinations in Section IV-C.

IV. EVALUATION

Our goal is to automatically recover meaningful and read-
able variables names that could assist a reverse engineer. This
section describes experiments that validate our SMT-based ap-
proach’s success at this task. In Section IV-A, we describe our
experimental setup, including dataset and metrics. Alignment
is a critical element for both generating our aligned corpus and
validating our technique; we proposed a number of alignment
procedures to that end (Section III-A). In Section IV-B, we
evaluate the precision and recall of each alignment proce-
dure. We use the best-performing alignment procedure for
all subsequent experiments. We measure how often we can
recover the original variable names or an approximation of
them in Section IV-C. We conclude by exploring the utility
of incorporating additional information into our analysis in
Section IV-D, and conversely study the effect of training on a
smaller corpus in Section IV-D3.

A. Experimental setup

1) Dataset: We generated our training corpus based on
a large number of C files sourced from GITHUB. We used
the GHTORRENT [23] service to identify 402,925 projects
written in C. We randomly selected 20,225 of these projects,
consisting of 1.2 TB of code and 8.4 billion lines of C, and
downloaded them. For each project, we automatically executed
available configure scripts and then ran make. We added a
wrapper around gcc to ensure that all binaries were compiled
with optimizations disabled (-O0). In total, we automatically
compiled 174,383 binaries (note that many GITHUB projects
build multiple binaries).

We split the compiled binaries into different sets for training
and testing. We randomly assigned each binary to a training,
test, tuning, or validation set with probability 94%, 3%, 0.5%
and 2.5% respectively. We used the training and tuning sets
to generate the parallel corpora that MOSES uses to estimate
its statistical models. We used the test set to evaluate the
system. The validation set was reserved for various manual
testing, alignment heuristics parameter tuning (see above), and
experimentation.

2) Alignment metrics: We consider alignment to be suc-
cessful when it correctly maps a decompiled variable to its
corresponding name in the original code. To evaluate different
alignment strategies, we first compile the original source code
with debug symbols. We use the Hex-Rays decompiler to
generate decompiled source code from these binaries, which
maintains the original variable names because of the debug
symbols. We then strip the variable names from this source
code and replace them with dummy names (v1, v2, etc.),
consistent with how Hex-Rays would have named them in
the absence of debug symbols. We then attempt to align
the variable names between the original source code and
the decompiled source code containing these dummy names.



Finally, we compare each dummy variable name with the
original variable name that we replaced it with.

This evaluation strategy is reasonable for the alignment
procedure, but not for the actual renaming. This is because
the types of contextual differences between code decompiled
by Hex-Rays with and without debugging information, such
as type names, are not components of the heuristics we use for
alignment. As a result, our alignment system should perform
equally well on code decompiled with and without debugging
symbols. We use this approximation, which can be automated,
in lieu of a human manual evaluation, which is prohibitive on
a dataset of this size.

3) Renaming metrics: Unlike when we evaluate our align-
ment techniques, we cannot evaluate our variable renam-
ing accuracy by simply decompiling the program with de-
bug symbols. This is because the SMT toolchain does use
additional information provided by debugging symbols: we
show in Section IV-D that variable renaming performs better
on programs with debug symbols, presumably because the
decompiled output contains better typing information. Since
debug symbols are unlikely to be present in real binaries, this
approach would be unrealistic. Instead, we simply assume that
the original name identified by our best alignment method is
the correct one, which makes no assumptions about presence
of debug symbols in the binaries. Recall that even though
alignment is not completely accurate, it does represent our
“best guess” for the correct variable names, and many variables
often have no corresponding name in the original source.

We assume that recovering the exact variable name in the
original source code provides substantial benefit to a reverse
engineer. We consider a renamed variable to be an exact
match if it is identical to the corresponding variable name in
the original source code. Additionally, several studies show
that humans work just as well with abbreviated identifiers
as they do with full-word identifiers [24], [25]. We therefore
also assume that abbreviated identifiers (e.g., ctx in place of
context) provide a similar level of utility as exact matches.
With this in mind, we additionally count approximate matches,
identified by the following rules:

• One variable name is a prefix of the other and at least
half as long. For example, str and string match this
rule, but s and string do not.

• Both variables consist of a sequence of letters followed
by a sequence of numbers, and the non-numeric part of
the names match and constitute at least half of the length
of the longer name. For example, str1 and str2 match
this rule, but v10 and v11 do not.

• Special cases that were manually added by inspecting the
results on the validation set (not used during testing), such
as format and fmt.

Collectively, exact and approximate matches provide a conve-
niently automated, but conservative estimate of the utility our
renaming approach provides. However, it is not necessary for
a recovered variable name to even resemble the original name
for it to be meaningful or useful. For example, a recovered
name that is synonymous with the original may convey the

TABLE I: Precision and recall of the three configurations of
alignment parameters described in Section III-A.

Configuration Precision Recall F Measure

A 86.1% 70.0% .77
B 93.2% 69.4% .80
C 91.3% 72.8% .81

TABLE II: Confusion matrix for our chosen alignment tech-
nique. There were 501,711 variables total, of which 333,153
had original names.

Aligned
Positive Negative

Actual Positive 242,471 80,565
Negative 23,097 155,638

same idea. It is also possible in theory that our system could
suggest a more descriptive name than the original programmer
provided, if such a “better” name was used more often in a
similar context across a large corpus. We do not currently
count such synonymous names in our results, and leave a
human study on the utility of such matches to future work.

We also note that our approach can likely be considered
as a “do no harm” approach: non-placeholder names should,
in theory, always be preferable to placeholder names, unless
there are situations when the more natural names can cause
additional confusion, which we expect is rare. Human studies
are necessary to disentangle these effects, which goes beyond
the scope of our current work.

B. Alignment

Table I shows the precision, recall, and F-measure for
each of the three alignment configurations described in Sec-
tion III-A. Based on these results, we selected alignment
method C for subsequent corpus generation and evaluation.
We choose this configuration because C has a slightly higher
F measure than B, and we found in initial experiments that
a model trained using the corpus generated with this method
recovered more variables.

Table II shows more detailed results of configuration C’s
performance as a confusion matrix. When using debug sym-
bols, our ground truth, we were able to detect 333,153 vari-
ables out of 501,711 that were aligned between the original
and decompiled source code. Of these variables, our best
alignment procedure (C) correctly identified the corresponding
variable 242,471 times, for a recall of 72.8%. Of the remaining
90,682 variables, the alignment procedure failed to report
any alignment for 80,565 (24.1%) of them, and reported an
incorrect alignment for 10,117 (3.0%). In addition, the align-
ment procedure incorrectly aligned 12,920 variables that were
introduced by the decompiler, and thus have no corresponding
variable in the original source code. The incorrect alignments
were combined in the false positive cell of Table II. This
corresponds to a precision of 91.3%.



1 my_rc base2_string(base2_handle base2_h,
2 char* buffer, size_t buffer_size) {/*...*/}

(a) Original source code.

1 my_rc base2_string(base2_handle base2_h,
2 char* buf, size_t len) {/*...*/}

(b) Renamed decompiled code.

Fig. 5: Header of a function renamed using our technique.
In this instance base2_h is recovered exactly, buffer is
recovered approximately as buf, and buffer_size is not
successfully recovered.

C. Baseline results

Table III reports how often our techniques can recover
variable names that are either exact matches or the com-
bination of exact and approximate matches (as defined in
Section IV-A). The No Alignment and Alignment columns
represent our baseline results. No Alignment refers to the
results produced when we generated the “foreign” language
by α-renaming variables in the original source code to match
the generic variable names produced by Hex-Rays (i.e., v1 and
a1, cf. Section II-C). In Alignment, we instead generate our
parallel corpus using our alignment technique as described in
Section III-A. The Hashed Context column describes the type
of context hashed as canonical variable names (Section III-C).
The Exact column reports the percentage of variable names
suggested by the technique that are identical to the original
variable names, while the Combined column reports both
exact and approximate matches that meet the criteria described
above in Section IV-A.

Examples of exact and approximate renamings, in addition
to a failed renaming can be seen in Figure 5. In this example,
base2_h is recovered exactly by our technique, while the
variable buffer is approximately recovered as buf. The
system fails to successfully recover buffer_size, suggest-
ing the name len instead. Note, however, that len could be
considered a reasonable alternative name for buffer_size
in some cases.

As can be seen in the table, using Alignment to generate
a parallel corpus produces an SMT model that can recover
significantly more variable names than the naı̈ve alternative
in all cases. Without applying contextual hashing, we exactly
recover 12.1% of the original names and a combined 15.4%
of the exact and approximate names when we use Alignment,
while we are only able to exactly and approximately recover
5.3% and 8.3% of the original names, respectively, in the
No Alignment experiment. As we explain in Section II-C,
we attribute the poor performance of the No Alignment con-
figuration to the non-idiomatic constructs that decompilers
generate, and this largely motivates our alignment-based ap-
proach. Interestingly, applying contextual hashing increases
the performance of the system under Alignment, but decreases
the performance of the system with No Alignment. In the best
case, we are able to recover 12.7% of the original names

1 int AAS_LoadFiles(const char* mapname) {
2 \\...
3 strcpy(aasworld.mapname, mapname);
4 \\...
5 Com_sprintf(aasfile, 64, "maps/%s.aas", mapname)

;
6 \\...
7 }

(a) Original source code.

1 int AAS_LoadFiles(const char* name) {
2 \\...
3 strcpy(&aasworld[88], name);
4 \\...
5 Com_sprintf(&c, 64, "maps/%s.aas", name);
6 \\...
7 }

(b) Renamed decompiled code.

Fig. 6: Example of a renaming generated by our technique
that does not match the original name, but still provides useful
context. Note how the function parameter in the decompiled
version was assigned the identifier name, while the original
code used the identifier mapname.

exactly and 16.2% at least approximately using Alignment,
while we are only able to recover 5.3% and 8.1% with No
Alignment, respectively.

While the recovery of 16.2% of the names may seem low,
recall that current decompilers do not attempt to assign any
meaningful names to variables.5 We believe that providing
reverse engineers with even a few meaningful names greatly
aids code comprehension and reduces some of the mental
effort involved in the complex task of reverse engineering.
We also note that the metrics we use in this paper are
conservative. We expect that some suggested variable names
may be meaningful and useful even if they do not meet
the relatively strict criteria that we require for an exact or
approximate match.

An example of this is shown in Figure 6. Our system
suggested name in place of the original name mapname,
which we do not count as an approximate match even though
it provides useful context. Using the information provided by
the identifier name, a reverse engineer could conclude on
line 3 that aasworld is a C struct that holds the value
of name at offset 88, while the format string on line 5
("maps/%s.aas") provides the rest of the context needed
to know that name holds the name of a map.

In addition, we have no automated way of evaluating
the names assigned by the system for decompiler-generated
variables. For example, our system suggests the name status
in Figure 1c, which we believe is an improvement over the
name the decompiler assigned, v5, but this is not reflected in
our numerical results.

5Some decompilers do have rules for assigning reasonable names to very
common identifiers, such as the use of i as a loop iterator, but to our
knowledge this is the most advanced approach currently used.



TABLE III: Percentage of exact and combined (exact + approximate) matches for our renaming technique.

No Alignment Alignment Local Additional Context
Hashed Context Exact Combined Exact Combined Exact Combined Exact Combined

None 5.3% 8.3% 12.1% 15.4% 20.7% 24.0% 26.1% 33.7%
Type 3.2% 5.8% 11.9% 15.4% 20.7% 25.3% 28.6% 37.1%
Entropy 4.3% 6.7% 11.6% 15.1% 21.4% 25.2% 27.6% 34.6%
Arg. Pos. 5.3% 8.1% 12.5% 16.1% 20.9% 25.0% 26.9% 34.9%
Type + Entropy 2.9% 5.0% 11.9% 15.4% 20.8% 24.5% 28.7% 36.0%
Type + Arg. Pos. 4.2% 7.1% 12.7% 16.2% 21.6% 25.5% 28.0% 36.1%
Arg. Pos. + Entropy 4.7% 7.4% 12.7% 15.1% 21.6% 25.0% 27.9% 34.6%
Type + Arg. Pos. + Entropy 3.8% 6.1% 11.8% 15.3% 23.1% 26.5% 28.3% 35.2%

D. Additional Information

In this section, we explore other ways to improve our
technique’s performance, by using additional contextual in-
formation when suggesting variable names.

1) Locality: A common use case of decompilers is in the
maintenance of legacy software [6]. For example, a company
may have lost the source code for the latest version of a
program, but may still possess source code for other software
developed by the same engineers (such as an older version of
the same system). By adding this older code to the training
corpus, it should be possible to improve the performance of
our approach by exploiting the localness of source code [26],
[27]. While all human-written source code is repetitive (i.e.,
natural), it is even more so when compared to other source
code in the same project, module, or function.

To measure the effect of localness on our renaming tech-
nique, we generated new testing and training sets on a per-
function rather than a per-binary basis. This configuration
increases the likelihood that different functions within a binary
will all be assigned to either the training and testing sets, which
simulates additional context that might be contained in source
code written by the same programmers, for instance.

The Local column in Table III describes results. Locality
has a positive impact on our ability to recover variable names:
we are able to recover 23.1% of variable names exactly, and
a combined 26.5% exactly and approximately, which is an
increase of 10.4% and 10.3% respectively. We hypothesize that
the increase in performance is due to the capture of project-
specific identifiers in the language model.

2) Context: Some decompilers struggle to recover user-
defined types such as xmlCtxt in Figure 1a. However, a
variable’s type is often linked to the purpose and name of
the variable. For example, a variable named count is much
more likely to be of type int than type string. When given
access to more accurate type information, the system should
be able to suggest more natural variable names.

To test this hypothesis, we compiled binaries with debug
symbols (using gcc -g), which Hex-Rays uses both to name
variables and assign their types. We then stripped the variable
names from the decompiled code, and applied our SMT

technique to recover those names. Training was performed
using a corpus generated using the alignment technique, as in
the previous experiments. This allows for direct comparison
between the techniques, isolating the impact of more accurate
types.

The Additional Context column of Table III shows results.
The additional context of accurate types significantly improves
our ability to recover variable names. We are able to recover
28.6% of variable names exactly and a combined 37.1%
exactly and approximately. Our technique does not require
any additional training or information to take advantage of the
additional context provided by better type information. This
means that the technique presented in this paper is likely to
benefit from future improvements that researchers develop in
type recovery.

We do note, however, that these numbers are also likely
an upper-bound on the performance of this technique, and
that additional algorithmic improvements would be required
to recover more variable names. Other promising avenues for
improvement include corpus generation with better alignment
heuristics, the addition of boosting techniques to improve
classification [28], or moving to more recent algorithms used
in NLP such as neural networks [29].

3) Amount of Training Data: The corpus size used in the
preceding experiments is quite large; the collection and com-
pilation of over a terabyte of code is not always practical. We
therefore performed another experiment to evaluate the impact
of corpus size on our results. To perform this experiment,
we generated a new training set the same size as used in
the original evaluation and then randomly subsampled this
training set to create new, smaller collections of training data.
For this evaluation, we use the same alignment method as in
the baseline evaluation, and the Type + Arg. Pos. contextual
hash configuration, since it performed the best in our original
evaluation.

The results of this evaluation are shown in Figure 7. In
this graph, the number of exact matches are represented by
the red dotted line, and the number of combined exact and
approximate matches are represented by the solid blue line.
Note that the number of variable names recovered is not linear
and increases rapidly at small corpus sizes. This suggests that
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Fig. 7: The impact of corpus size on the recovery rate of our
technique.

our technique could be useful even with a much smaller corpus
size. With a corpus size an order of magnitude smaller than
the full corpus, we were still able to recover 6.5% of the
original variable names exactly and 9.6% of the variable names
exactly or approximately, as compared to 12.7% and 16.2%
respectively when using the full corpus.

V. RELATED WORK

Our work is closely related to the fields of decompilation
and reverse engineering. We also adapt and expand on work
done on the application of natural language processing tech-
niques to software engineering problems.

A. Reverse Engineering and Decompilation

Decompilation of executables is a large field, with appli-
cations to malware analysis [3]–[5], security auditing [3],
[6], [7], and maintaining legacy software [6]. Decompilation
research stretches back several decades [6]. Many modern
decompilers are based on the pioneering idea that decompilers
should be engineered in a similar way as compilers, with
explicit front and back-ends that are connected by an interme-
diate language [30]. This shift in design allowed decompilers
to be organized as a series of modular transformations in which
each transformation recovers a different type of abstraction.

This design has allowed subsequent decompiler research to
focus on improving techniques for one type of abstraction
recovery, rather than the engineering of a decompiler as
a whole. For example, Phoenix [7] and DREAM [3] both
proposed new methods for recovering control flow structure
(e.g., transforming goto statements to while loops). Other

decompiler researchers have proposed new methods for re-
covering information about types and variable names [31]–
[33]. Although in this research type recovery and variable
recovery go hand in hand, variable recovery is usually limited
in scope to identifying storage locations and the context in
which they are used in executable code. In particular, this
existing work on variable recovery does not attempt to recover
meaningful variable names for variables. We hope that this
paper will motivate researchers to include meaningful names
as a component of variable recovery in the future.

We are not aware of any other work that attempts to recover
variable names in decompiled code. The most closely related
work to ours is the recovery of identifiers in obfuscated
JavaScript by JSNICE [9] and JSNAUGHTY [10]; our tech-
nique is directly inspired by the latter.

B. Naturalness of Software

The application of natural language processing techniques
to software is possible because code is natural. It is well
known that short code sequences are rarely unique [34], and
Hindle et al. [12] demonstrated that statistical language models
can be more effective at capturing regularities in software
source code than in natural language because of this effect.
Allamanis et al. [8] also leveraged this property to learn
coding conventions, and suggest natural identifier names and
formatting in a development environment. This naturalness
property has enabled us and other researchers to generate
probabilistic models of source code and apply them to software
engineering problems [35]–[37].

C. Readability

The problem of software readability is also well-studied, and
researchers have developed models of software readability that
measure the difficulty of reading and comprehending source
code [24], [38], [39]. These models incorporate identifier
names as a component, and more research has shown that
careful choice of identifier names aids in the comprehension of
software [1], [2]. Other research has shown that although iden-
tifier names can largely be arbitrary, programmers carefully
choose identifier names to convey meaning to readers of their
code [40]. Readability has inspired research into techniques
for the automated suggestion of method, class, [41] and unit
test [42], [43] names.

VI. CONCLUSION

Understanding executable programs without the use of
source code is a significant challenge for reverse engineers.
Although modern decompilers can effectively recover vari-
ables, types, and high-level code structure, they do not recover
meaningful variable names, which are an important component
of software readability. Our results show that meaningful
variable recovery is possible by leveraging the fact that code
is natural. Furthermore, our techniques for recovering variable
names can be applied to the output of any suitable executable
decompiler to improve readability and reduce the cognitive
burden required to comprehend the code.
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