
Looking for Lacunae in Bitcoin Core’s Fuzzing Efforts

Alex Groce
Northern Arizona University

United States

Kush Jain
Carnegie Mellon University

United States

Rijnard van Tonder
Sourcegraph, Inc.

United States

Goutamkumar Tulajappa
Kalburgi

Northern Arizona University

United States

Claire Le Goues
Carnegie Mellon University

United States

ABSTRACT

Bitcoin is one of the most prominent distributed software systems

in the world. This paper describes an effort to investigate and en-

hance the effectiveness of the Bitcoin Core fuzzing effort. The effort

initially began as a query about how to escape saturation in the

fuzzing effort, but developed into a more general exploration. This

paper summarizes the outcomes of a two-week focused effort.While

the effort found no smoking guns indicating major test/fuzz weak-

nesses, it produced a large number of additional fuzz corpus entries,

increased the set of fuzzers used for Bitcoin Core, and ran mutation

analysis of Bitcoin Core fuzz targets, with a comparison to Bitcoin

functional tests and other cryptocurrencies’ tests. Our conclusion

is that for high quality fuzzing efforts, improvements to the oracle

may be the best way to get more out of fuzzing.

CCS CONCEPTS

• Software and its engineering → Dynamic analysis; Soft-

ware testing and debugging.

KEYWORDS

fuzzing, saturation, test diversity, mutation analysis, oracle strength

ACM Reference Format:

AlexGroce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi,

and Claire Le Goues. 2022. Looking for Lacunae in Bitcoin Core’s Fuzzing

Efforts. In 44nd International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP ’22), May 21–29, 2022, Pittsburgh, PA, USA.

ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3510457.3513072

1 INTRODUCTION

Bitcoin [8] is the most popular cryptocurrency, and, while volatile,

has a market cap consistently over half a trillion dollars since Jan-

uary of 2021. Bitcoin Core (https://github.com/Bitcoin/Bitcoin) is

by far the most popular implementation, and serves as a reference

for all other implementations of Bitcoin. To a significant degree,

the code of Bitcoin Core is Bitcoin. Because of its fame and the

high value of Bitcoins, Bitcoin is a high-value target for hackers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9226-6/22/05. . . $15.00
https://doi.org/10.1145/3510457.3513072

Therefore, testing the code is of paramount importance, including

extensive functional tests and aggressive fuzzing. This paper de-

scribes a focused effort to identify weaknesses in, and improve, the

fuzzing of Bitcoin Core.

Chaincode Labs (https://chaincode.com/) is a private R&D center

that exists solely to support and develop Bitcoin. In March of 2021

the head of special projects at Chaincode contacted the first author

to discuss determining a strategy to improve the fuzzing of Bitcoin

Core. It seemed that the fuzzing was “stuck”: neither code coverage

nor found bugs were increasing with additional fuzzing. After some

discussion, an 80 hour effort was determined as a reasonable scope

for an external, research-oriented, look at the fuzzing effort.

Saturation, as defined in the blog post (https://blog.regehr.org/

archives/1796) that brought Chaincode Labs to the first author,

is when “We apply a fuzzer to some non-trivial system... [and]

the number of new bugs found by the fuzzer drops off, eventually

approaching zero.” At first a particular fuzzer applied to a system

will tend to continuously increase both coverage and discovery of

previously-unknown bugs. But, at some point, these bugs are known

(and often fixed) and the fuzzer stops producing new bugs. Code and

behavioral coverage seems to be saturated. The underlying reason

for saturation is that any fuzzer (or other test generator) explores

a space of generated tests according to some complex probability

distribution. Some bugs lie in the high-probability portion of this

space, and other bugs lie in very low probability zero probability

parts. Escaping saturation may require a variety of approaches.

2 RESULTS

One thing that quickly emerged from discussions before the pri-

mary 80 hour effort began was the limited extent of the fuzzer runs

being performed. The fuzzing includes a large number of targets,

each with its own fuzz harness and executable. At the time, the

basic strategy was to run libFuzzer on each of these for 100,000

iterations. Because some targets are very fast and a few, such as

full message processing, are slow, this meant in practice fuzzing

most targets for only 30-90 seconds, and even the slowest targets

for only a little over an hour. The total time for over 100 targets

was not negligible, but expecting such short runs for each target,

after an initial exploration of the easy part of the probability space,

to gain coverage or bugs very often, was simply unrealistic. For

complex targets such as transaction verification and end-to-end

message processing, 100,000 iterations was highly insufficient. The

first suggestion for escaping saturation, therefore was very sim-

ple: run the fuzzer longer! The Chaincode tried increasing their

configuration to 5 million iterations, multiplying the number of

185

2022 IEEE/ACM 44th International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
20

22
 IE

EE
/A

CM
 4

4t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

En
gi

ne
er

in
g:

 S
of

tw
ar

e
En

gi
ne

er
in

g
in

 P
ra

ct
ic

e
(IC

SE
-S

EI
P)

 |
 9

78
-1

-6
65

4-
95

90
-5

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
SE

-S
EI

P5
53

03
.2

02
2.

97
94

08
6

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 24,2022 at 19:33:49 UTC from IEEE Xplore. Restrictions apply.

ICSE-SEIP ’22, May 21–29, 2022, Pittsburgh, PA, USA Alex Groce, Kush Jain, Rijnard van Tonder, Goutamkumar Tulajappa Kalburgi, Claire Le Goues

Figure 1: Mutation kills for tx_verify.cpp

executions by a factor of 50. Based on initial success with a few

targets, this was done for all targets, and became the new default.

By May 20th, Bitcoin Core was also in OSS-Fuzz: https://github.

com/google/oss-fuzz/tree/master/projects/bitcoin-core. From then

on, Bitcoin Core has essentially been continuously fuzzed, and OSS-

Fuzz quickly produced new crashes to investigate, and continues to

do so: https://bugs.chromium.org/p/oss-fuzz/issues/list?q=bitcoin.

Additonal efforts to improve the fuzzing focused on adding sup-

port for the Eclipser fuzzer [2], and attempting to use swarm test-

ing [6] to produce more unusual message sequence interactions.

Using Eclipser produced a large number of additional corpus seeds

for OSS-Fuzz (over 2,000 inputs, the third largest contribution to

the set to date), while swarm turned out to be ineffective, due to

extensive manual cross-seeding providing similar benefits. Neither

approach, however, turned up any new bugs and improvements

were in some sense marginal (new paths or data values only).

3 MUTATION ANALYSIS

Attempting to improve a fuzzing effort is one way to find prob-

lems with the effort; if you succeed, you found a weakness. How-

ever, none of the attempts exposed a serious problem. An alter-

native is to directly look for holes in testing. The Bitcoin Core

fuzzing team clearly was measuring and inspecting code coverage

(see https://marcofalke.github.io/btc_cov/), so little value would be

added by inspecting traditional coverage alone. Mutation testing/-

analysis [9], however, subsumes code coverage and adds extremely

valuable information on oracle power in addition to mere cover-

age [4]. In previous work, we had used mutation testing to improve

the random testing of the Linux kernel’s RCU module, and in the

process discovered some subtle kernel bugs [1, 3].

We used the Universal Mutator (https://github.com/agroce/

universalmutator) [5] to mutate transaction verification code in the

tx_verify.cpp file; this is clearly extremely critical functionality.
Fuzzing covers 96 of 98 lines of code, 8 of 8 functions, and 74 of 102

branches for this file, guaranteeing that mutation testing will not

primarily reflect missing coverage. Comparing coverage to that for

functional testing, the fuzz testing has very slightly lower branch

coverage, but the numbers are almost identical (72.5% vs. 73%), and

the fuzz testing covers different branches.

TheUniversalMutator generated 430mutants. The process_message_tx

fuzz target was able to detect 24 mutants, and the coins_view har-
ness was able to detect 32 mutants, for a total of 50 mutants (since

some mutants were detected by both). Fuzzing could detect just

under 12% ofmutants. Fuzzing adds only two uniquemutant kills be-

yond those produced by functional testing, which has amuch higher

score. This raises the question: why fuzz? The answer lies in the fact

that, even in the presence of such high quality tests, fuzzing uncov-

ers subtle bugs that functional tests designed by humans will almost

never detect, e.g. https://github.com/bitcoin/bitcoin/issues/22450.

To put Bitcoin Core in context, we performed mutation analysis

of transaction-verification-related code for other cryptocurrencies,

and Bitcoin ranked high: 2nd out of 6 projects. Bitcoin Core also

had the highest File and Project coverage of any project.

Our conclusion, based on the negligible gap between code cov-

erage for fuzzing and functional tests, and the huge difference in

mutation scores, and the lack of new bugs found even when we

ran novel fuzzers, is that the best way for Bitcoin to gain fuzzing

power might be to improve the oracle power in fuzzing by adding

more invariants and sanity checks. The Bitcoin Core code has about

1,800 assert statements, scattered among 180KLOC of C and C++.

The resulting ratio of about one assertion per 100 lines of code is

not terrible, but is at the lower limit of what many consider to be

an acceptable assertion ratio for critical code. Given that Bitcoin

Core defines at least 4,000 functions, the code obviously doesn’t

meet the NASA/JPL proposal of having an average of two asser-

tions per function [7]. There are only five assert statements in the

src/consensus directory, which has about 500 lines of code and
defines more than 10 functions, suggesting that the assertion ratio

is low even for very critical code.

Full Report: The full report on this effort is available at https:

//agroce.github.io/bitcoin_report.pdf.Acknowledgements:A portion

of this work was supported by the National Science Foundation under CCF-

2129446; the authors would also like to thank Chaincode Labs and the

Bitcoin Core team.

REFERENCES
[1] Iftekhar Ahmed, Carlos Jensen, Alex Groce, and Paul E. McKenney. 2017. Applying

Mutation Analysis on Kernel Test Suites: an Experience Report. In International
Workshop on Mutation Analysis. 110–115.

[2] Jaeseung Choi, Joonun Jang, Choongwoo Han, and Sang Kil Cha. 2019. Grey-box
Concolic Testing on Binary Code. In Proceedings of the International Conference on
Software Engineering. 736–747.

[3] Alex Groce, Iftekhar Ahmed, Carlos Jensen, Paul E McKenney, and Josie Holmes.
2018. How verified (or tested) is my code? falsification-driven verification and
testing. Automated Software Engineering Journal 25, 4 (2018), 917–960.

[4] Alex Groce, Mohammad Amin Alipour, and Rahul Gopinath. 2014. Coverage and
Its Discontents. In Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software (Onward!). 255–268.

[5] Alex Groce, Josie Holmes, Darko Marinov, August Shi, and Lingming Zhang. 2018.
An Extensible, Regular-expression-based Tool for Multi-language Mutant Genera-
tion. In Proceedings of the 40th International Conference on Software Engineering:
Companion Proceeedings (Gothenburg, Sweden) (ICSE ’18). ACM, New York, NY,
USA, 25–28. https://doi.org/10.1145/3183440.3183485

[6] Alex Groce, Chaoqiang Zhang, Eric Eide, Yang Chen, and John Regehr. 2012. Swarm
Testing. In International Symposium on Software Testing and Analysis. 78–88.

[7] Gerard J Holzmann. 2006. The power of 10: Rules for developing safety-critical
code. Computer 39, 6 (2006), 95–99.

[8] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. https:
//bitcoin.org/bitcoin.pdf.

[9] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances in
Computers. Vol. 112. Elsevier, 275–378.

186

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on September 24,2022 at 19:33:49 UTC from IEEE Xplore. Restrictions apply.

