$3: Syntax- and Semantic-Guided Repair Synthesis via
Programming by Examples

Xuan-Bach D. Le
Singapore Management University
Singapore
dxb.le.2013@smu.edu.sg

Claire Le Goues
Carnegie Mellon University
Pittsburgh, USA
clegoues@cs.cmu.edu

ABSTRACT

A notable class of techniques for automatic program repair is known
as semantics-based. Such techniques, e.g., Angelix, infer semantic
specifications via symbolic execution, and then use program synthe-
sis to construct new code that satisfies those inferred specifications.
However, the obtained specifications are naturally incomplete, leav-
ing the synthesis engine with a difficult task of synthesizing a
general solution from a sparse space of many possible solutions
that are consistent with the provided specifications but that do not
necessarily generalize.

We present S3, a new repair synthesis engine that leverages
programming-by-examples methodology to synthesize high-quality
bug repairs. The novelty in S3 that allows it to tackle the sparse
search space to create more general repairs is three-fold: (1) A
systematic way to customize and constrain the syntactic search
space via a domain-specific language, (2) An efficient enumeration-
based search strategy over the constrained search space, and (3) A
number of ranking features based on measures of the syntactic and
semantic distances between candidate solutions and the original
buggy program. We compare S3’s repair effectiveness with state-of-
the-art synthesis engines Angelix, Enumerative, and CVC4. S3 can
successfully and correctly fix at least three times more bugs than
the best baseline on datasets of 52 bugs in small programs, and 100
bugs in real-world large programs.

CCS CONCEPTS

- Software and its engineering — Programming by example;
Dynamic analysis; Software testing and debugging;

KEYWORDS

Program Repair, Programming by Examples, Inductive Synthesis,
Symbolic Execution

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5105-8/17/09....$15.00
https://doi.org/10.1145/3106237.3106309

Duc-Hiep Chu
Institute of Science and Technology
Austria
duc-hiep.chu@ist.ac.at

David Lo
Singapore Management University
Singapore

davidlo@smu.edu.sg

Willem Visser
Stellenbosch University
South Africa
wvisser@cs.sun.ac.za

ACM Reference format:

Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem
Visser. 2017. S3: Syntax- and Semantic-Guided Repair Synthesis via Pro-
gramming by Examples. In Proceedings of 2017 11th Joint Meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering, Paderborn, Germany, September
4-8, 2017 (ESEC/FSE’17), 12 pages.

https://doi.org/10.1145/3106237.3106309

1 INTRODUCTION

Bug fixing is notoriously difficult, time-consuming, and costly [5,
46]. Hence, automating bug repair, to reduce the onerous burden of
this task, would be of tremendous value. Automatic program repair
has been graining ground, with substantial recent work devoted to
the problem [6, 20, 24-26, 29, 32, 34-36, 51, 52], inspiring hope of
future practical adoption. One notable line of work in this domain is
known as semantics-based program repair, most recently embodied
in Angelix [36]. This class of techniques uses semantic analysis
(typically dynamic symbolic execution) and a set of test cases to
infer behavioral specifications of the buggy code, and then program
synthesis to construct repairs that conform to those specifications.
Such approaches have recently been shown to scale to bugs in large,
real-world software [36].

Although scalability has been well-addressed, one pressing con-
cern in program repair is patch quality, sometimes quantified in
terms of patch overfitting or generalizability [43]. Generated re-
pairs can sometimes overfit to the tests used for repair, and fail
to generalize to a different set of tests. This may be caused by
weak or incomplete tests, or even simply the nature of the repair
technique [19, 43]. Various repair approaches have been shown
to suffer from overfitting, including GenProg [29], RSRepair [39]
and SPR [32]. Semantics-based approaches like Angelix [36], are
no exception to this issue, as partially shown in recent studies [27].
Overfitting, and patch quality generally, remains a challenging
problem in the program repair field.

One reason for patch overfitting is that the repair search space
is often sparse, containing many plausible solutions that can lead
the buggy program to pass a given test suite, but that may still
be judged incorrect [33]. One way to tackle overfitting is thus
to constrain the search space to patches that are more likely to
generalize. Other strategies for increasing the quality of output

https://doi.org/10.1145/3106237.3106309
https://doi.org/10.1145/3106237.3106309

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser

patches include higher-granularity mutation operators [19], anti-
patterns [45], history-based patterns [28], feedback from execu-
tion traces [8], or document analysis [51]. Angelix [36] eagerly
preserves the original syntactic structure of the buggy program
via PartialMaxSMT-based constraint solving [35] and component-
based synthesis [16]. However, such enforcement alone may not be
enough [8]. Furthermore, incorporating other strategies or criteria
into a constraint-based synthesis approach is non-obvious, since
doing so typically requires novel, and often complicated constraint
encodings (this problem has been pointed out by others, see, e.g.,
Chapter 7 of [14] or Section 2 of [45]). This motivates the design
of a new repair synthesis technique that can consolidate various
restrictions or patch generation criteria, enabling an efficient search
over a constrained space for potentially higher-quality patches.

We present S3 (Syntax- and Semantic-Guided Repair Synthesis),
a new, scalable repair synthesis system. S3 addresses the challenge
of synthesizing generalizable patches via our novel design of three
main components: (1) An underlying domain-specific language
(DSL) that can systematically customize and constrain the syntactic
search space for repairs, (2) An efficient enumeration-based search
strategy over the restricted search space defined by the DSL to find
solutions that satisfy correctness specifications, e.g., as induced by
test suites, and (3) Ranking functions that serve as additional criteria
aside from the provided specifications to rank candidate solutions,
to prefer those that are more likely to generalize. Our ranking
functions are guided by the intuition that a correct patch is often
syntactically and semantically proximate to the original program,
and thus measure such syntactic and semantic distance between a
candidate solution and the original buggy program. Unlike other
constraint-based repair synthesis techniques, our framework is
highly customizable by design, enabling the easy inclusion of new
ranking features — its design is inspired by the programming-by-
examples (PBE) synthesis methodology [14].

Given a buggy program to repair and a set of test cases (passing
and failing), S3 works in two main phases. The first phase automat-
ically localizes a repair to one or more target repair expressions
(e.g., branch condition, assignment right-hand-side, etc.). S3 runs
dynamic symbolic execution on the test cases to collect failure-free
execution paths through the implicated expressions. It then solves
the collected path constraints to generate concrete expression val-
ues that will allow the tests to pass. These specifications, expressed
as input- and desired-output examples, are input to the synthesis
phase. The synthesis phase first constrains the syntactic search
space of solutions via a DSL that we extend from SYNTH-LIB [3].
Our extension allows it to specify a starting sketch, or an expression
that gives S3 clues about what possible solutions might look like.
Here, the sketch is the original buggy expression under repair. Next,
S3 forms a solution search space of expressions of the same size
as the sketch. Finally, it ranks candidate solutions via a number
of features that approximate the syntactic and semantic distance
to the specified sketch. If S3 cannot find any solution of the same
size as the sketch, it investigates expressions that are incrementally
smaller or larger than the sketch, and repeats the process.

We evaluate S3 by comparing its expressive power and the qual-
ity of the patches it generates to state-of-the-art baseline tech-
niques (Angelix [36]; and Enumerative [3], and CVC4 [41] two

alternative syntax-guided synthesis approaches), on two datasets.
The first dataset includes 52 bugs in small programs, a subset of
the IntroClass benchmark [30] translated to Java [10].! The Intro-
Class dataset contains only small programs, but provides two high-
coverage test suites for each, allowing an independent assessment
of repair quality. The second dataset includes 100 large real-world
Java bugs that we collected from GitHub. We focus on Java, and
build a new dataset of real-world Java bugs, for several reasons. First,
Java is the most popular and widely-used programming language,
and its influence is growing rapidly.? Second, a realistic, real-world
dataset with transparent ground truth — fixes submitted by develop-
ers — can simplify the critical process of assessing the correctness
of fixes generated by program repair tools in the absence of two
independent, high-quality test suites. Existing benchmarks often in-
clude bug fixes with many changed lines, which can include tangled
changes such as new features or code refactoring [15]; even curated
datasets such as Defects4] [18] contain many changes involving
a large number of lines. This complicates evaluation of generated
patch correctness. Our dataset is restricted to bugs whose fixes
involve fewer than five lines of code, alleviating the risk of tangled
code changes. As many current state-of-the-art repair tools target
bugs that require only a small number of changed lines [34-36],
our dataset is sufficient for assessing current research.

We assess the quality and correctness of generated repairs in
several ways. For the IntroClass bugs, we assess correctness on in-
dependent, held-out test suites (those provided with the benchmark,
as well as additional tests we generate), separate from those used to
guide the repair. We use the developer-provided patches as ground
truth for the 100 real-world bugs. For these bugs, we consider a
generated patch correct if it is either (1) syntactically identical to
the developer-provided patch, or (2) semantically equivalent via
some (basic) transformations. On both datasets, S3 substantially
outperforms the baselines. S3 generates correct patches for 22 of 52
bugs from the first dataset; Angelix, Enumerative, and CVC4 can
generate correct patches for 7, 1, and 1 bug(s), respectively. On the
large real-world dataset, S3 generates correct patches for 20 out of
100 bugs, while Angelix, Enumerative, and CVC4 can only generate
correct patches for 6, 6, and 5 bugs, respectively.

In summary, our novel contributions include:

e We present S3, a scalable repair synthesis engine that is geared
towards synthesizing generalizable repairs.

e We propose a novel combination of syntax- and semantic-guided
ranking features to effectively synthesize high-quality repairs.
New features along these lines can be straightforwardly inte-
grated into S3, by design.

e We present a large scale empirical study on the effectiveness of
different synthesis techniques in semantics-based program repair
context. S3 substantially outperforms the baselines in terms of
generated repair quality.

o We present a dataset consisting of several bugs from large real-
world software with transparent ground truth, which can enable
confident evaluation of machine-generated patch correctness.

!We use the subset of IntroClass to which our repair tools can apply, given their
applicability to strictly integer and boolean domains.
Zhttp://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

Syntax- and Semantic-Guided Repair Synthesis via Programming by Examples ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

1 if (sourceExcerpt != null) {

2

3 -if (excerpt.equals(LINE) && @ <= charno

4 - && charno < sourceExcerpt.length()) {
5 +if (excerpt.equals(LINE) && @ <= charno

6 + && charno <= sourceExcerpt.length()) {
7

8 3

Figure 1: A bug in Closure compiler, revision 1e070472. The
bug is at lines 3-4. The developer fix is shown on lines 5-6;
it turns a < to a <= in the second line of the if condition.

Input Desired
(M1) M2)
Test charno excerpt.equals(LINE) sourceExcerpt.length() Output
A ‘ 7 true 7 ‘ true
B ‘ 10 true 10 ‘ true

Figure 2: Input-output examples for both variables and con-
ditions, extracted for the Closure compiler bug described in
Figure 1. We use M1 and M2 to refer to the conditions in
columns 3-4 in subsequent exposition. The last column rep-
resents the desired output of the overall branch decision.

o We release source code for S3 and the aforementioned dataset,
along with all results, in support of open science.

The rest of the paper is structured as follows. Section 2 describes a
motivating example, followed by Section 3 explaining our approach.
Section 4 describes our experiments, results, and observations. Sec-
tion 5 presents related work; Section 6 concludes.

2 MOTIVATING EXAMPLE

We begin by motivating our approach and illustrating its underlying
insight by way of example. Figure 1 shows changes made to address
a bug in the Closure compiler at revision 1e070472. The bug lies in
the if-condition expression at lines 3—4; the developer-submitted fix
is depicted at lines 5-6. This bug can be repaired by simply chang-
ing charno < sourceExcerpt.length() tO charno <= sourceExcerpt.length(), while
the rest of the condition expression remains unchanged. Table 2
shows example input and desired-output examples extracted for
this bug at the buggy if-condition on two failing test cases. For
each test run, the input includes runtime values of variables and
method calls at the buggy lines, while the output is the value of the
branch condition for the buggy lines that would cause the test to
pass. For example, for test 1, the input includes runtime values for
method calls excerpt.equals(LINE) and the variable charno. The desired
output of the branch condition is true. These input-output examples
constitute incomplete specifications for each buggy line considered
in the program; although they are incomplete, they are scalably
and automatically derivable from provided test cases.

Given these specifications (examples), the space of possible sat-
isfying solutions is large, and contains many undesirable options,
such as excerpt.equals(LINE), excerpt.equals(LINE)|| @ < charno, both OfWhiCh,
among others, would lead to the desired outputs on the considered

3https://xuanbachle.github.io/semanticsrepair/

expressions. Such solutions, if returned by a repair synthesis en-
gine, create low-quality, overfitting repairs that lead the program
to pass all provided tests but are not correct. In fact, Angelix [36]
generates an overfitting repair for this bug, substituting e < charno for
the entire if-condition expression on lines 3—4 (Section 4 provides
details on our straightforward port of Angelix to Java). This repair
is quite different from the original expression both syntactically
(despite Angelix’s use of constraints to enforce minimal syntac-
tic differences from an original expression) and semantically. The
generated condition is indifferent to values of excerpt.equals(Line) and
sourceExcerpt. length(), Substantially weakening the branch condition
with respect to the original buggy version.

These observations inform insights that can be used to filter
trivial solutions. In this case, the correct solution is syntactically
and semantically close to the original buggy expression. Fusing
syntactic and semantic measures of proximity can help rank the
solution space to favor those that are more likely to be correct.
Our approach, S3, estimates these distances in several ways to
constrain the syntactic solution synthesis space, increasing the
likelihood or producing a generalizable patch (see Section 3.2.3).
For the example in Figure 1, S3 synthesizes a patch that is identical
to the one submitted by the developer.

3 METHODOLOGY

S3 works in two main phases. Given a buggy program and a set of
test cases, the first phase (Section 3.1) localizes potentially buggy
program locations and, for each buggy location, extracts input
and desired output examples that describe passing behavior. The
extracted examples are input to the second phase (Section 3.2),
which synthesizes repairs that satisfy and also generalize beyond
the provided examples.

3.1 Automatic Example Extraction

S3 first uses fault localization to identify likely-buggy expressions
or statements in the buggy program. S3 runs the test cases and
uses Ochiai [2] to calculate suspiciousness scores that indicate how
likely a given expression or a statement is to be buggy. S3 iterates
through each identified buggy location (or group of locations in the
case of multi-location repair), to extract input-output examples via a
selective, dynamic symbolic execution [7].4 For each buggy location,
S3 inserts a symbolic variable to represent/replace the expression at
the selected location. It then invokes test cases on the instrumented
programs to collect path conditions that do not lead to runtime
errors such as assertion errors, array index out of bound errors, etc.
Solving these failure-free execution paths returns concrete values
of symbolic variables that then can serve as input-output examples.
We implement selective symbolic execution procedure on top of
Symbolic PathFinder (SPF) [38].

For example, consider the buggy code snippet in Figure 1. S3
identifies that the if-condition at lines 3-4 may be buggy. S3 then
replaces the buggy if-condition with a symbolic variable a, making
the if-condition becomes “if(a)”. S3 runs dynamic symbolic execu-
tion on the instrumented program using the provided test cases to
collect failure-free execution paths, runtime variable values, and

4For simplicity, we describe the process with respect to a single location; it extends
naturally, by installing symbolic variables at multiple locations at once.

https://xuanbachle.github.io/semanticsrepair/

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser

method calls involved in the buggy location. Solving the collected
path conditions returns the values in the output column of Figure 2,
corresponding to desired values of the symbolic variable a.

Although this phase shares the same spirit as the specification
inference step in Angelix [36], there are key differences. Angelix
infers specifications by solving models of the form pc A O, = O,
where pc is a path condition produced by symbolic execution of a
test, O is the actual output, and O, is the expected output that is
typically manually provided by a user.”> The models capture the idea
that if the expected output matches the actual concrete test output,
the corresponding path condition is a test-passing path. Solving
all test-passing paths returns specifications that lead all tests to
pass. This process, however, can be tedious and error-prone, since
it usually requires users to instrument output variables manually.
For instance, if the output is a large array of many elements, users
must give all expected outputs for all the elements of the array.

S3 extracts examples in an automated manner by building on
SPF [38] automatic JUnit-test interpretation abilities. For a location
i, S3 extracts examples by solving models of the form pc A no errors.
pc is the path condition: /\;.=1 pc;j. The “no errors” notation means
that the conditions describe paths that are guaranteed to not yield
assertion errors (as described above). If the path condition pc yields
an assertion error, S3 automatically discards that path. In another
case, if an array-out-of-bound error happens, S3 pops the latest pc;
leading to the error, keeping previous ones: /\ ;;} pc;j. This frees S3
users from manual effort, while guaranteeing that the examples are
still failure-free.

3.2 Repair Synthesis from Examples

Examples extracted in the previous phase are input as correctness
specifications to the repair synthesizer. The goal of the synthesizer is
to inductively construct a solution that satisfies and also generalizes
beyond the provided specifications. This synthesis procedure is
composed of three main parts: (1) a domain-specific language (DSL),
(2) a search procedure, and (3) ranking features. We begin with an
overview, and detail each component subsequently.

We start with a DSL (extended from SYNTH-LIB [3]) over the
integer and boolean domains. Given a background theory T permit-
ted by the DSL, let u be the original buggy expression, ¢ a formula
over the vocabulary of T representing the correctness specifications
(input-output examples), and L a set of expressions over the vocab-
ulary of T of the same type as u. A candidate fix is an expression
e € L such that ¢[u/e] is valid modulo T.

Our algorithm then systematically enumerates all candidate fix
expressions, considering them in ranked order. The ranking is per-
formed by a set of N ranking functions r;j(1 < i < N), each of
which measures the distance between two expressions e; and ez of
the same type. These ranking features estimate the syntactic and
semantic distance between a candidate fix and the original buggy
expression. The intuition is that expressions that are closer to the
buggy program are more likely to constitute high-quality repairs.

Note, however, that the size of L (the search space) is often too
large to be truly exhaustively enumerated. For practical purposes,
we greedily favor candidate expressions of similar size and syntax

SWe refer readers to the Angelix manual: https://github.com/mechtaev/angelix/blob/
master/doc/Tutorial. md

to the original buggy expression. As described in Section 3.2.2,
we systematically partition the search space, enabling different
heuristics to be built without difficulty.

Algorithm 1 presents pseudocode for S3. At a high level, the
search procedure enumerates all expressions in the grammar at a
certain expression-size range (Line 4). S3 finds all candidate enu-
merated expressions that are consistent with the specifications
(Line 7). Each candidate is assigned a ranking score by calculating
the distance between it and the original buggy expression (Lines 8);
candidates are sorted by score (Line 12). The process returns the so-
lution in L with the smallest distance, if L # () (Line 14). Otherwise,
it continues until all expression size ranges have been exhausted
(Line 3). S3 starts enumerating at the size of the original buggy
expression (Line 2), and modifies the size range accordingly up
to a bound b (Line 3). The original buggy expression and its size
are made available to the synthesis procedure through our “sketch”
extension to the SYNTH-LIB syntax (Section 3.2.1).

Algorithm 1 Enumeration-based synthesis procedure

Input:
u > Original buggy expression
[0) > Correctness specifications
G > SYNTH-LIB grammar (extended)
R > Set of ranking features
b > Synthesis bound

1: function SYNTHESIS(4, ¢, G, R, b)

2 i « size of u

3 fork < 0to bdo

4 A « {e in grammar G | e of size from i —k toi+k }
5: L« {}

6 foralle € Ado

7 if ¢[e/u] is valid then

8

e.score «— Y. ri(e,u)

ri€R
9: L—LUe
10: end if
11: end for
12: sort(L) > by ascending order of score
13: if L is not empty then
14: return L.head > solution found
15: end if
16: end for

17: return FAIL
18: end function

We next explain the DSL in detail (Section 3.2.1), the enumeration-
based search procedure (Section 3.2.2), and the ranking features
that we propose for the program repair domain (Section 3.2.3).

3.2.1 Domain-Specific Language via SYNTH-LIB. We ex-
tend SYNTH-LIB [3] to systematically constrain S3’s search space.
We choose SYNTH-LIB for three reasons:

(1) Balanced Expressivity. SYNTH-LIB is adequately expressive
for various tasks in the program repair domain, while still suffi-
ciently restrictive to allow an efficient search procedure. Figure 3
describes a simplified grammar for SYNTH-LIB. Note that it allows

https://github.com/mechtaev/angelix/blob/master/doc/Tutorial.md
https://github.com/mechtaev/angelix/blob/master/doc/Tutorial.md

Syntax- and Semantic-Guided Repair Synthesis via Programming by Examples ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

IntExpr == N | Var | IntExpr BinOp IntExpr

BoolExpr ::= IntExpr RelOp IntExpr | BoolExpr LogOp Bool Expr

| true | false | Var | ~BoolExpr
RelOp = > << 2=

LogOp s=A|V|= BinOp == + | -

Figure 3: Simplified SYNTH-LIB grammar used in S3.

the definition of integer expressions (IntExpr), including integer
constants (N), integer variables, and binary relations. Boolean ex-
pressions are defined similarly. Although simple, this grammar is
sufficiently expressive for repairs over integers in booleans, includ-
ing linear computations and logical relationships.

(2) Availability. SYNTH-LIB is not esoteric, but instead, broadly
available to various tools for Syntax-Guided Synthesis (SyGuS) [3].
This allows for easy comparisons between tools, and indeed we
use SYNTH-LIB to compare S3 with two other state-of-the-art
SyGusS solvers (Enumerative [3] and CVC4 [41]). We believe that an
abundance of synthesis techniques will benefit the program repair
domain, given the rapid growth of the SyGuS research community,
along with publicly available implementations [3, 4, 41].

(3) Cost Metrics. SYNTH-LIB allows for definition of cost metrics
like expression size; this is useful for calculating ranking features.
We further extended SYNTH-LIB to allow the specification of a
starting sketch, which gives clues on where the enumeration pro-
cedure should start. In our case, the starting sketch is the original
buggy expression, capturing our idea that the correct fix is more
likely to be syntactically and semantically close to the original code.
The sketch allows ranking features to measure the distance between
candidate solutions and the original expression(s).

We illustrate with a SYNTH-LIB script for the example in Fig-
ure 1; Figure 4 shows the corresponding SYNTH-LIB script. In
Figure 4, the first line sets the background theory of the language
to Linear Integer Arithmetic (LIA). The function being synthesized
f is of type INT=INT—BOOL—BOOL, (keyword synth- fun). The
permitted solution space for the function f is described in its body,
which allows expressions of type boolean. Each boolean expres-
sion can then be formed by logical relationships between any two
integer or boolean expressions, via relational or logical operators.
Expressions can also be variables; M1 in this case is a boolean ex-
pression. The allowed integer expression in the grammar is defined
via IntExpr, which includes integer variables such as charno and M2,
and constants such as 0.

We next define the constraints consisting of input-output ex-
amples and the starting sketch. Each constraint is defined by the
keyword constraint. In our example, the first constraint says that if
the value of M2 is 7, the value of M1 is true, and the value of charno
is 7, the expected output of the function f over charno, M2, and M1
is true. The second constraint can be interpreted similarly. These
constraints corresponding to the extracted input-output examples
described in Figure 2. A sketch, the starting-point expression, is
defined by the keyword sketch. Here, the sketch is the original

1 (set—logic LIA)
(synth—fun f ((charno Int) (M2 Int) (M1 Bool)) Bool
((Start Bool (
(< IntExpr IntExpr) (< IntExpr IntExpr)
5 (or Start Start) (and Start Start)
6 M1))
7 (IntExpr Int (
charno M2 0
))))
10 (declare—var charno Int)
11 (declare—var M2 Int)
12 (declare—var M1 Bool)
15 (constraint (= (and (= M2 7) (and (= M1 true) (= charno 7)))
14 (= (f charno M2 M1) true)))
15 (constraint (= (and (= M2 10) (and (= M1 true) (= charno 10)))
16 (= (f charno M2 M1) true)))
i (sketch u ((charno Int) (M2 Int) (M1 Bool)) Bool
18 (and (and M1 (< 0 charno)) (< charno M2)))
v (check—synth)

Figure 4: SYNTH-LIB script generated by S3 for the example
in Figure 1, derived using the “Alternatives” layer described
in Figure 5. M1 stands for excerpt.equals(LINg), and M2 stands for

sourceExcerpt.length().

6t Layer
L Alternatives ¢ %
ayer| {<, sk {>, 2} {=, 1=} {+, -} {&&, |1} @
2% Layer Basic{_eqtj_a)lities g
== - RE
Basic inequalities 3 2
31 Layer| . <> 3 <« =2 ‘_f‘,,
,$,>,2 3
Basic arithmetic ! 3
4t Layer PR <« g
—— E|
5 Layer Basic g — 3

Figure 5: Search space layers specifiable in the grammar.

buggy expression u. Finally, the keyword check-synth instructs a
synthesizer to start the synthesis process.

3.2.2 Enumeration-based Synthesis. S3 automatically gen-
erates a SYNTH-LIB script for each location under repair, and then
uses an enumerative search to synthesize generalizable repair ex-
pressions conforming to the generated script. We note that multi-
location repair can be achieved by generating the grammar for
multiple functions simultaneously; we describe the process with
respect to a single function for simplicity. We first explain how the
SYNTH-LIB script is generated, and then the search procedure.

We divide the search space into multiple layers, each of which
allows different components or operators, to appear in the SYNTH-
LIB grammar script. If S3’s search procedure cannot find a solution
at a lower layer, it advances to the next. This approach tractably
constrains the synthesis search space [37]. Figure 5 shows the six
layers. The first layer allows alternatives of operators existing in the

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser

» o«

original buggy expression. For example, a pair {*&&”, “||”} means
that the operators in the pair are alternatives of one another. If the
search procedure cannot find any solution, the grammar then cumu-
latively allows additional variables that do not exist in the original
buggy expression, denoted by the “Variables” component in the
Figure 5. At the second layer, the grammar allows basic-inequalities
operators (= and /=), in addition to operators in the original expres-
sion. Again, if this search fails, it cumulatively allows for additional
Variables. Subsequent layers can be interpreted similarly. We note
that at the last (sixth) layer, the grammar allows all components,
including integer constants appearing in the input-output examples.
The reason integer constants are considered last is that such con-
stants may unduly allow trivial solutions; this choice is influenced
by previous studies [14, 27].

The design of separate sub-search-spaces systematically allows
us to either prioritize which space to explore first, or unify the
spaces freely. We heuristically prioritize the search space by auto-
matically analyzing the surrounding context of the original buggy
statement, such as the method declaration that contains the buggy
statement. Particularly, S3 automatically looks for expressions in
the surrounding context that use the same variables appearing in
the buggy statement, and analyzes the components used in those
expressions. This gives S3 clues on which search space to start
from. If the prioritized search space does not help find solutions, S3
searches in the unified search space (the sixth layer). If S3 cannot
find context to help prioritize the space, it follows the procedure
described previously, starting from the first layer.

3.2.3 Ranking Features. We employ the insight that a correct
repair is often syntactically and semantically close to a buggy ex-
pression/statement [8]. We thus propose features that measure the
syntactic and semantic distance between a candidate solution and
the original buggy code. The final ranking score of a candidate solu-
tion is the sum of individual feature scores. S3 allows new features
to be incorporated without difficulty; by contrast, constraint-based
synthesis approaches (e.g. [35, 36]) typically require non-obvious
Satisfiable Modulo Theory (SMT) encodings for new features [45].

Syntactic Features. Syntactic features look at differences between
candidate solutions and the original buggy expression at the Ab-
stract Syntax Tree (AST) level. We do this in three ways:

o AST differencing. We use GumTree [12] to compare ASTs.
GumTree produces transformations between ASTs in the form
of actions on AST nodes such as insert, delete, update, or move.
We measure the number of actions needed to transform the
original buggy AST to the candidate solution AST. This feature
can be easily calculated by directly applying GumTree on the
ASTs produced by parsing the SYNTH-LIB grammar script.

e Cosine similarity. An AST can also be represented as a vector
of node occurrence counts [17]. The occurrence of each node
type (e.g., integer variables or constants, or a binary operation)
in an AST, represent a vector of the AST. The similarity of two
ASTs can then be represented by the cosine similarity of their
representative vectors, denoted as cosine_score. We then define
the distance from the solution’s AST to the original AST as:
1 — cosine_score (cosine_score of 1 denotes that two vectors
are identical). A SYNTH-LIB grammar explicitly enables type

checking, meaning this feature is easy to calculate via an AST
traversal to collect type information.

e Locality of variables and constants. Variables and constants
are the primary ingredients of expressions. Thus, in addition
to capturing abstract changes on the AST, we capture lower-
level differences via the locations of variables and constants
in expressions. We compute the Hamming distance between
two vectors representing locations of variables and constants
in each expression.® For example, consider a A (b < 1) as the
original expression, a A (b < 1) as the first solution, and (b <
1) A a as the second solution. The hamming distance from
the original expression for the first and second solutions are 0
and 3 respectively. Although both solutions are semantically
equivalent, we may want to prefer the first in the interest of
change minimality.

Semantic Features. Semantic features look at either the difference
between a solution S; and the original expression u, or the semantic
quality of S; itself. We propose three semantic features:

e Model counting. Model counting (c.f. [48]) is often used to
count the number of models satisfying a particular formula. We
use this feature to measure the level of “disagreement” between
any two boolean expressions. That is, we say that a solution
S; and the original expression u disagree with each other if
the formula (S; A ~u) V (=S; A u) is valid, meaning that S;
and u cannot be both valid at the same time. We then define
the level of disagreement between S; and u by the number of
models that satisfy the formula, which accounts for the semantic
distance between them. As a simple example, assume that we
have: a < 10 as the original expression u, a < 13 as a solution
S1,and a < 15 as a solution Sy. The semantic distance via model
counting between these solutions and u is 4 and 6, respectively.
This simple example generalizes naturally to the typical off-by-
one bug in Figure 1.

e Output coverage. This feature looks at how much a solution
covers the set of outputs in the set of input-output examples.
For instance, assume input-output examples (constraints) for
two tests 71 and T», on an input i, and an output o:

Ti:i=5—>0=5

Ty:(i=6—>0=5)V(i=6—>0=6)
A trivial solution for this example is simply the constant 5; An-
other solution is the expression i. The first solution overfits to
only one output despite the presence of three examples that
have two distinct outputs. The second solution covers all output
scenarios in the provided examples, making it intuitively less
overfitting as compared to the first. A solution S; receives a
077 score of N¢/No, where N, is the number of output sce-
narios in the provided input-output examples, and N, is the
number of output scenarios that the solution S; covers. The
feature score of a solution S; is defined as 1 — O7°“. The higher
Ol.cov, the better the solution S;.

e Anti-patterns. This feature aims to heuristically prevent syn-
thesis from generating trivial solutions. Particularly, these pat-
terns are anti-duplicate and -constant expressions, e.g., a < q,
0 # 1, etc. Expressions containing these patterns typically eval-
uate to a constant true or false, and are thus likely to overfit.

®https://en.wikipedia.org/wiki/Hamming_distance

https://en.wikipedia.org/wiki/Hamming_distance

Syntax- and Semantic-Guided Repair Synthesis via Programming by Examples ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

We filter out these expressions during the synthesis process.
Again, this can be easily done by traversing the AST produced
by the SYNTH-LIB grammar. The utility of anti-patterns has
been explored for search-based program repair [45], but not for
semantics-based counterparts, partially because it is difficult to
integrate additional such measures directly in the constraint-
based synthesis approach [45].

4 EVALUATION

This section describes our comparison between S3 and state-of-
the-art semantics-based program repair techniques. We describe
experimental setup and research questions in Section 4.1; answer
those research questions in Sections 4.2-4.3; and present discussion,
limitations, and threats in Section 4.4.

4.1 Experimental setup

We ran all experiments on a Intel Corei5 machine with 4 cores and
8GB of RAM.

Baseline approaches and settings. We compare S3 to Angelix [36],
Enumerative [3], and CVC4 [41]. Angelix offers its specification
inference engine and synthesis engine in separate code packages.
Although the specification inference engines behind Angelix and
S3 work on C and Java programs, respectively, Angelix’s synthesis
engine takes as input example-based specifications like the syn-
thesis engine of S3. Thus, to enable comparisons between S3 and
Angelix, we instruct S3’s inference engine to generate the same type
of specifications that Angelix’s synthesis engine uses, and instruct
both S3’s and Angelix’s synthesis engines to synthesize the repair
based on the same provided specifications. Enumerative [3] and
CV(C4 [41] are state-of-the-art Syntax-Guided Synthesis (SyGuS)
engines which both take input in the form of SYNTH-LIB scripts,
like 3.7 This allows straightforward comparison between the tools.

For single-line patches, we run a repair synthesis tool on each
buggy location of each program in parallel, and stop once a repair
is found. The timeout for synthesis task is set to three minutes
each. For multi-line-patches, we implement the approach described
bellow.

Angelix tackles patches involving multiple lines [36] by group-
ing multiple buggy locations, and synthesizing repairs for several
locations at once. Angelix clusters buggy locations into groups
of a user-specified size by either locality or suspiciousness score
produced by fault localization. We reimplemented this feature, fol-
lowing Angelix’s source code.® Angelix’s synthesis engine are run
on these specifications.

We implemented our own strategy to tackle multi-line patches
for S3, Enumerative, and CVC4. Each buggy location is repaired
separately, after which patches for certain locations are grouped.
Given a test suite T, and patches {P;} generated by a repair synthesis
tool for location i. Assuming each patch p € P; leads the program
to pass a set of tests T; C T, we iterate through all patches and
combine those that have UT; = T. The intuition is that combining

"We refer interested readers to [1] and http://www.sygus.org/ for a full comparison
between SyGusS engines

8https://github.com/mechtaev/angelix. The implementation for this feature in An-
gelix’s source is approximately 70 lines of Python code.

Table 1: Top 5 largest programs that S3 can correctly patch.
Math refers to the Apache Commons Math library

‘Closure OrientDB Math Molgenis Heritrix

KLoc ‘ 237 203 175 54 48

these patches may render the whole test suite T to pass, which we
then verify dynamically.

Datasets. We consider two datasets of buggy programs:

e Small programs associated with high coverage test suites.
We experiment with 52 Java bugs in the smallest subject pro-
grams of the IntroClass program repair benchmark [30] trans-
lated to Java [10]. The programs are student-written homework
assignment from an introductory programming class; the goal
of the programs is to find the smallest number between four
integer numbers. Although the programs are small, they fea-
ture possibly complicated fixes involving changes in multiple
if-then-else structures. We include only syntactically distinct
programs. We focus on smallest because it only includes integer-
and boolean-related fixes. Neither Angelix nor our framework
can yet handle, e.g., floating point numbers or strings, primarily
due to the limited capability of the constraint solving techniques
used in symbolic execution.

A key benefit of focusing on these small programs is that the
problems in IntroClass are associated with two independent,
high-quality test suites. We use one test suite to guide the search
for a repair and the other to assess produced patch quality. We
further augment the dataset by using Symbolic PathFinder [38]
to generate additional tests. We do this by manually adding
correctness specifications such as logical assertions, on the
buggy programs, and use SPF to generate test inputs that expose
bugs, e.g., assertion violations. This results in 16 additional tests.

e Large real-world programs. Our second dataset consists of
100 large real-world Java bugs from 62subject programs, fea-
turing ground truth bug fixes submitted by developers. Our
dataset only includes bugs with patches that change fewer than
five lines of code. This simplifies quality and correctness as-
sessment of machine-generated patches, which is especially
important because real-world test cases can be incomplete or
weak specifications of desired behavior [40, 43].

We build our dataset based on a previously-proposed bug
fix history dataset [28], which originally consists of around
3000 likely bug-fixing commits of fewer than five lines of code
collected from GitHub. To further ensure that the collected com-
mits are actually bug fixes, we randomly sampled 500 commits,
and manually checked them to ensure that the commits compile
and that the program test cases expose bugs pre-commit (as
compared to post-commit test behavior). We treat tests that fail
in the before-patched version but pass in the patched version
as the failing tests addressed by the bug fixing commit. Since
this process is time consuming, we stopped once we found 100
bugs from 62 programs. Table 1 shows the top five largest pro-
grams for which S3 can correctly patch bugs. “KLoc” depicts
the number of lines of Java code in each project.

http://www.sygus.org/
https://github.com/mechtaev/angelix

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser

Table 2: Repair tool performance on 52 IntroClass bugs.

‘ Angelix
| 3 Enum CvC4 1 2 3 4

Produced 22 13 13 17 18 17 20
Pass all

22 1 1 3 4 4
held-out tests 7
% Overfit 0% 92% 92% 82% 61% 76% 80%

if ((@a <b) & (a<c) 8& (a<d)) {
// By S3: ((a <=b) && (a <=c) & (a < d))
// By Angelix: (a <= c¢) && (a < d)
System.out.println(a);

} else if ((b<a) & (b <c) && (b <d)) {
// By S3: (b <= a) 8 (b <= c) & (b < d)
// By Angelix: no change
System.out.println(b);

} else if ((c < a) & (c <b) && (c <d)) {
// By S3: (c <= a) &% (c <= b) && (c < d)
// By Angelix: (c.value < d.value)
System.out.println(c);

} else {
System.out.println(d);

O ~NOU A WN =

AW N = O ©

o

}

Figure 6: A bug in a smallest program correctly fixed exclu-
sively by $3. We show the patches from S3 and Angelix.

Research questions and metrics. Our core metric is the number of
buggy programs that a tool correctly patches. Fully assessing repair
quality and correctness is an open problem in program repair re-
search, and thus we approximate in several ways. For the IntroClass
bugs, we designate a patch correct if it passes all held-out test cases,
described above. We divide the SPF-generated tests randomly, using
half to augment the tests used to repair and the other half to aug-
ment the held-out tests. For the real-world bugs, a patch is deemed
correct if it is syntactically identical to the developer-produced
patch. We also manually inspect all the results (produced by all
repair tools) as a sanity check. In our inspection, if it is possible for
a machine-generated patch to be converted into the corresponding
developer’s patch via basic transformations, we also consider it
as correct. These patches are the minority in our evaluation; we
separate these in our results and present the patches in prose. We
report overfitting rate, or the percentage of produced patches that
are incorrect, for each tool (lower is better); and expressive power
in terms of the unique buggy programs each tool correctly patches.
Our two research questions are then divided by dataset:

RQ1. How does each tool perform on the dataset of small programs
associated with high coverage test cases, in terms of correct patches
generated, overfitting rate, and expressive power?

RQ2. How does each tool perform on the dataset of real-world
programs, in terms of correct patches generated, overfitting rate,
and expressive power?

4.2 Performance on IntroClass

Table 2 shows the results of each repair synthesis tool on 52 bugs
from the IntroClass dataset. The “Produced” column shows the total
number of patches that each tool generated that pass the provided
test cases, while the “Pass held-out tests” shows the number of
produced patches that generalize to pass all held-out evaluation

Table 3: Repair tool performance on 100 real-world bugs.

| $3 S3gn S3.em Enum CVC4 Angelix

Produced 20 15 12 13 12 13
Syntax match 16 11 7 5 4 4
Manual 4 1 4 1 1 2
Overfit, Syn 20% 27% 42% 62% 67% 69%
Overfit, Both 0% 20% 8% 54% 58% 54%

tests (and that we thus consider correct). “% Overfit” shows the
percentage of produced patches that do not generalize to the held-
out tests (lower is better). Note that Angelix’s multi-line patch
facility is driven by two parameters: number of buggy locations in a
group (1-4), and the criterion used to group them (either by locality
or suspiciousness score). These results are based on score-based
grouping, which uniformly outperformed the alternative in our
experiments (results not shown). When the group size is set to 1,
we allow Angelix to try our own multi-line patch strategy, in case
single-line repair is unsuccessful.

Table 2 shows that S3 substantially outperforms the baselines,
generating significantly more patches, all of which generalize to
the held out test cases. The degree to which Angelix patches overfit
varied by lines considered, ranging from a minimum of 61% to a
maximum of 82%. Enumerative and CVC4 perform comparably,
with a very high percentage of overfitting patches. S3 generates
correct patches for all the bugs for which Angelix, Enumerative,
and CVC4 can fix. S3 also generated almost exclusively multi-line
patches (with one exception).

We speculate that the underlying synthesis techniques are the
primary source of the baselines” weak performance. Enumerative
enumerates expressions in increasing size, while CVC4 uses un-
satisfiability (unsat) cores to synthesize solutions; neither rank
candidate solutions, but instead conservatively return the first satis-
fying solution identified. Angelix encodes a simple patch minimality
preference criteria in constraints suitable for PartialMax SMT. How-
ever, in these experiments, we observed that Angelix frequently
generated patches that are quite different from the original buggy
expressions (typically much smaller in size). These results and ob-
servations suggest that S3’s combination of a customizable search
space, an appropriately-managed expression-size-wise search strat-
egy, and numerous ranking functions, all contribute to its successful
generation of generalizable patches.

Figure 6 shows an example of a bug that S3 patches correctly but
to which the baselines overfit. For brevity, we only show patches
from S3 and Angelix. This code snippet requires a multi-line patch
to multiple if-conditions. We show the replacement if-expressions
from S3 and Angelix in the code comments. From the first if-
condition, the Angelix fix is already incorrect, as it fails to capture
the necessary relationship between variables a and b. The condi-
tion from S3 shares the structure of the original buggy expression,
capturing the relationships between all variables. Producing this
patch is likely assisted by S3’s expression-size-wise enumerative
search, which starts from the size of the original buggy expressions.

4.3 Performance on real-world programs

Table 3 shows the results of applying each considered repair tool
on 100 real-world bugs from our second dataset. The first row

Syntax- and Semantic-Guided Repair Synthesis via Programming by Examples ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

1 ...First bug...

2 - if (Character.isDigit(next)// Buggy if-condition

3 + if (Character.isDigit(next) || next == '.') // fix by developer
4+ if ((46 == next) || Character.isDigit(next)) // fix by S3

5

6 ...Second bug...

7 - return (csvBuffer.getMark() >= (bufferIndex - 1))// fix buggy expression
8 + return (bufferIndex) < (csvBuffer.getMark() + 1)// fix by developer
9 + return (csvBuffer.getMark() > (bufferIndex - 1))// fix by S3

10

11 ...Third bug...

12 - while (newLength > offset)// fix buggy expression

13 + while (newLength < offset)// fix by developer
14 + while (offset > newLength)// fix by S3

16 ...Fourth bug...
17 if(this.runningState != STATE_RUNNING && this.runningState !=
STATE_SUSPENDED) {

18 throw new IllegalStateException("...");

19 3

20 - stopTime = System.currentTimeMillis();

21 + if(this.runningState == STATE_RUNNING) { // fix by developer
22 + if(this.runningState != STATE_SUSPENDED) // fix by S3

23 + stopTime = System.currentTimeMillis();

24 + 3}

Figure 7: Bugs for which S3 generates patches that are not
syntactically identical but semantically equivalent to the de-
veloper fixes.

shows the total number of bugs for which each tool generated a
patch. Because we lack second independent test suites for these
programs, we use a direct syntactic match to the developer patch
to define correctness (row “Syntax match”). We additionally found,
via manual inspection, a small number of additional patches that
appear semantically identical to the developer patches; we describe
these patches for S3 below. The last two rows show the percentage
of produced patches that fail to generalize to capture the developer-
written patch, as judged via strict syntactic match (“Overfit, Syn”)
or via both syntactic match and manual inspection (“Overfit, Both”).

S3 again substantially outperforms the baseline techniques, gen-
erating correct patches for many more programs. Only 4 of the 20
S3 patches fail to strictly syntactically match the developer fixes.
Although manual author inspection, is an inadequate mechanism
for rigorously assessing patch quality, simple syntactic transforma-
tion rules can convert these patches to their developer equivalents;
we separate these out in Figure 7.

In terms of overfitting, only 20% of S3’s patches fail to generalize
when judged by perfect syntactic fidelity; when manual inspection
is considered, none of the patches overfit. For Angelix, Enumera-
tive, and CVC4, 54%, 58%, and 54% of the produced patches overfit,
respectively.

In these experiments, we also evaluate the relative contribution
of S3’s syntactic versus semantic feature sets for ranking — S35y
and S3gem in the table, respectively. When only either syntactic
or semantic features are used to rank the solution space, the per-
formances of S3 varies. S35y and S3sem generate fewer correct
patches, with slightly higher overfitting rates, suggesting that both
kinds of features are beneficial for S3’s performance.

All programs that are correctly fixed by other tools are also
fixed by S3. We note that the number of correctly-fixed bugs by
the three baselines can be increased (to 9 bugs) if we combine all

bugs correctly repaired by them. This combination is, however, still
inferior to S3’s performance.

The first bug in Figure 7 is an example of a bug that S3 fixes
correctly, while the others do not. Enumerative and CVC4 gener-
ate the same fix with each other, that does not ultimately pass all
tests (both synthesize (e == o) to replace the if condition); Angelix
generates no fix for this bug. S3’s fix is not syntactically identical
but it is semantically equivalent to the developer’s fix. This can be
demonstrating by transforming S3’s patch using basic transforma-
tion rules, e.g., swapping both left and right hand sides of the “||”
operator, and converting the integer 46 to the character “”. The fix
generated by Enumerative and CVC4, on the other hand, cannot be
transformed to the developer’s fix. We note that the incorrect fix
generated by Enumerative and CVC4 is largely destructive, since
it converts the branch condition to always evaluate to true. This
kind of destructive fix can be prevented in S3 via the anti-patterns
feature, as described in Section 3.2.3. In general, S3 generates more
correct patches than the other approaches, judged via both syntac-
tic fidelity to the developer fix and via fidelity with respect to basic
syntactic transformations.

4.4 Discussion, Limitations, and Threats

Discussion and Limitations. Semantics-based repair in general
exclusively modifies expressions in conditions or on the right-hand
side of assignments. Additionally, such techniques can only syn-
thesize or reason about replacement code including boolean or
integer types. Our experience suggests that these limitations are
the primary reasons for unrepaired bugs in our experiments. Some
bugs require large changes to semantic or control-flow structure
(e.g., a change from if(...){A};if(...)(B} tO if(...){A} else if(...){B}), the
insertion of new statements, or manipulation of variables of types
that existing constraint solving technology cannot handle. Resolv-
ing these challenges remains future work, and can progress apace
with progress in the synthesis domain. However, it is noteworthy
that semantics-based repair techniques are reasonably expressive
despite these limitations.

Threats to validity. Our results may not generalize to other sub-
ject programs beyond those upon which our experiments were
conducted. We mitigate this risk by evaluating our solution on 100
real bugs from many real-world programs. The size of this bug
set is commensurate with those used to evaluate prior automated
repair techniques, e.g., [29]. Another threat to the validity of our
results is our reimplementation of the multi-line patch feature of
Angelix (Section 4.1). However, we note this feature is simple, and
only takes around 70 lines of Python code, and that we used the
existing released implementation as reference.

Finally, we seek to assess the quality of the produced patches, in
terms of the degree to which they overfit to the provided test cases
(or, by contrast, generalize beyond them). Patch quality, especially
in an automated repair context, is an unsolved research problem.
We assess patch quality using several objective and established mea-
sures. We use independent test suites, when possible, to quantify
overfitting (an established methodology [30, 43]). For real-world
programs, we use syntactic fidelity to the developer patches as the
gold standard for correctness. Bugs may often be patched multi-
ple ways, and thus this standard is likely stricter than correctness

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser

truly requires. We also manually inspect all produced patches, a
process subject to bias but important to safeguard against mistakes.
We present a number of these patches in this paper, and publicly
release all the results, experimental data, and our code for open
investigations.’

5 RELATED WORK

Program repair. General program repair techniques can typi-
cally be divided into two main branches: heuristic- and semantics-
based repair. Heuristics-based repair includes techniques like Gen-
Prog [29, 31, 50], which heuristically searches for repairs via ge-
netic programming algorithm. RSRepair [39] and AE [49] replace
the search strategy in GenProg by random and adaptive search
strategies, respectively. These techniques, despite scaling well, have
been shown to produce patches that overfit to the provided test
suites [40, 43]. PAR [20] generates repairs based on repair tem-
plates manually learned from human written patches. More re-
cently, Prophet [34] and HDRepair [28] also use heuristic search to
generate patches, augmented with mined repair models from his-
torical data to rank patches, preferring those that match frequent
human fix patterns. Tan et al. propose anti-patterns to prevent
heuristic tools from generating trivial repairs [45]. ACS [51] tar-
gets if-condition defects by using fix templates (rules) to generate
patches. It then leverages document analysis (such as on javadoc
comments) as an additional criterion to rank patches.
Semantics-based repair techniques, such as SemFix [37], Direct-
Fix [35], and Angelix [36], use symbolic execution and program
synthesis to synthesize repairs. Such techniques, however, either
do not have a notion of patch ranking or only include simple
ranking criteria such as syntactic structural differences. As such,
semantics-based repair approaches can also produce overfitting
patches [27], motivating stronger techniques that can generalize be-
yond weak specifications inferred from tests. Other semantics-based
techniques include SPR [32], which targets defects in if-conditions;
SPR can also produce trivial or functionality-deleting repairs [36].
Nopol [52] works in a similar spirit to SPR and SemFix, targeting
if-condition defects using SMT-based synthesis. Qlose [8] uses pro-
gram execution traces as an additional criteria to rank patches,
and encode program repair problem into a program synthesis tool
namely SKETCH [44]. SearchRepair [19] lies between heuristic-
and semantic-based repair, using semantic search as its underly-
ing mutation approach to produce higher-granularity, high-quality
patches. However, it does not yet scale as well as other approaches.
Our technique, S3, belongs to the semantics-based family, and
thus, is different in kind from the heuristic techniques. S3 can
target more bug types than SPR, Nopol, and ACS (which focus
on if condition-based defects) including incorrect assignments, if-
and loop-conditions, and expressions in return statements. Unlike
ACS, S3 does not use explicit fix templates or document analysis to
generate or rank patches; integrating such approaches in ranking
especially is a possible avenue for future work. S3 is more scalable
compared to various semantics-based counterparts such as SemFix,
DirectFix, Qlose, and SearchRepair. S3 also allows the inclusion
of a variety of ranking features beyond syntactic structural differ-
ences considered in prior work. Indeed, S3’s ability to incorporate

“https://xuanbachle.github.io/semanticsrepair/

new ranking criteria is an important novelty, overcoming a known
challenge in SMT-based synthesis [14, 45].

Program synthesis. Generally, techniques in this area include
inductive (example-based) synthesis and deductive (logical rea-
soning based) synthesis. S3 belongs to the inductive family. Flash-
Fill [13] synthesizes programs that work on string domain. FlashEx-
tract [23] synthesize programs that automate the data extraction
process. Singh et al. use programming by examples (PBE) to au-
tomatically transform spreadsheet data types [42]. FlashNormal-
ize [21] automatically normalizes texts using PBE. REFAZER uses
a PBE-based approach to automatically learn program transfor-
mations. NoFAQ synthesizes command repairs from input-output
examples [9]. Programming via sketching [44] uses a sketch as
partial specifications, and search for an implementation that satis-
fies the specification; we use a similar idea in the DSL that uses a
starting sketch to help rank candidate solutions.

6 CONCLUSIONS

We proposed S3, a new repair synthesis system that is able to
generate high-quality, general patches for bugs in real programs.
S3 consists of two main phases, which serve to: (1) Automatically
extract examples that serve as a specification of correct behavior,
using dynamic symbolic execution on provided test cases, and
(2) Use a synthesis procedure inspired by the programming-by-
examples methodology to synthesize general patches. The efficiency
and effectiveness of the synthesis procedure is enabled by our
novel designs of three main parts, including a domain-specific
language, which we extend from SYNTH-LIB [3]; an expression-
size-wise enumerative search; and syntax- and semantic-guided
ranking features that help rank the highest quality solutions highest
in the solution space. Our results showed that S3 generates many
more high-quality bug fixes than even the best performing baseline
from prior work.

Beyond these results, our approach opens a number of oppor-
tunities for future repair synthesis techniques. The specifications,
in the form of input-output examples, can be strengthened with
specifications inferred by specification mining and other inference
techniques [11, 22], possibly enabling integration of inductive and
deductive synthesis for a more expressive overall system. Our frame-
work’s flexible design allows more features to be investigated and
easily integrated into our ranking technique, such as, for exam-
ple frequent fix patterns mined from human written patches [28].
Our dataset can also be extended, and used to evaluate many more
repair systems. We plan to extend the SYNTH-LIB grammar to
represent more tasks in the program repair domain, e.g., nonlinear
computations on the integer domain. Finally, machine learning
might be useful in automatically classifying bug types [47], to more
effectively deal with different kinds of defects automatically.

ACKNOWLEDGMENTS

This work is supported in part by the National Science Founda-
tion under grant CCF-1563797. Duc-Hiep Chu was supported in
part by the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE/SHINE) and Z211-N23 (Wittgenstein Award).

https://xuanbachle.github.io/semanticsrepair/

Syntax- and Semantic-Guided Repair Synthesis via Programming by Examples ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany

REFERENCES

(1]
(2]

=

(17

[18

[19]

[20

[21]

[22

[23]

[24]

[25]

2016. Syntax-guided Synthesis. (2016). http://www.sygus.org/

Rui Abreu, Peter Zoeteweij, and Arjan JC Van Gemund. 2007. On the accuracy of
spectrum-based fault localization. In Testing: Academic and Industrial Conference
Practice and Research Techniques-MUTATION (TAICPART-MUTATION 2007). 89—
98.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund
Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. 2015. Syntax-guided synthesis. Dependable
Software Systems Engineering (2015).

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling Enumerative
Program Synthesis via Divide and Conquer. Technical Report. University of
Pennsylvania.

Tom Britton, Lisa Jeng, Graham Carver, Paul Cheak, and Tomer Katzenellenbogen.
2013. Reversible Debugging Software. Technical Report. University of Cambridge,
Judge Business School.

Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. 2011. Angelic
debugging. In International Conference on Software Engineering (ICSE’11). 121~
130.

Vitaly Chipounov, Vlad Georgescu, Cristian Zamfir, and George Candea. 2009.
Selective symbolic execution. In Workshop on Hot Topics in System Dependability
(HotDep).

Loris D’Antoni, Roopsha Samanta, and Rishabh Singh. 2016. Qlose: Program
repair with quantitative objectives. In International Conference on Computer
Aided Verification (CAV). Springer, 383-401.

Loris D’Antoni, Rishabh Singh, and Michael Vaughn. 2017 (to appear). NoFAQ:
Synthesizing command repairs from examples. In Joint Conference on European
Software Engineering Conference and International Symposium on Foundations of
Software Engineering (ESEC/FSE ’17).

Thomas Durieux and Martin Monperrus. 2016. IntroClassjava: A Benchmark
of 297 Small and Buggy Java Programs. Technical Report. Universite Lille 1.
https://hal.archives-ouvertes.fr/hal-01272126/document

Michael D Ernst, Jeff H Perkins, Philip] Guo, Stephen McCamant, Carlos Pacheco,
Matthew S Tschantz, and Chen Xiao. 2007. The Daikon system for dynamic
detection of likely invariants. Science of Computer Programming 69, 1 (2007),
35-45.

Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-
tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
International Conference on Automated Software Engineering (ASE’14). 313-324.
Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In ACM SIGPLAN Notices, Vol. 46. ACM, 317-330.

Sumit Gulwani, Javier Esparza, Orna Grumberg, and Salomon Sickert. 2016.
Programming by Examples (and its applications in Data Wrangling). Verification
and Synthesis of Correct and Secure Systems (2016).

Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. In
Working Conference on Mining Software Repositories (MSR). 121-130.

Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
guided Component-based Program Synthesis. In International Conference on
Software Engineering (ICSE). Cape Town, South Africa, 215-224. DOI :http://dx.
doi.org/10.1145/1806799.1806833

Lingxiao Jiang, Ghassan Misherghi, Zhendong Su, and Stephane Glondu. 2007.
Deckard: Scalable and accurate tree-based detection of code clones. In Interna-
tional conference on Software Engineering (ICSE). IEEE, 96-105.

René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4]: A database
of existing faults to enable controlled testing studies for Java programs. In
International Symposium on Software Testing and Analysis (ISSTA ’14). 437-440.
Yalin Ke, Kathryn T. Stolee, Claire Le Goues, and Yuriy Brun. 2015. Repairing
Programs with Semantic Code Search. In International Conference on Automated
Software Engineering (ASE). 295-306.

Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. 2013. Auto-
matic patch generation learned from human-written patches. In International
Conference on Software Engineering (ICSE ’13). 802-811.

Dileep Kini and Sumit Gulwani. 2015. FlashNormalize: Programming by Ex-
amples for Text Normalization.. In International Joint Conference on Artificial
Intelligence (IJCAI). 776-783.

Tien-Duy B Le, Xuan-Bach D Le, David Lo, and Ivan Beschastnikh. 2015. Syner-
gizing specification miners through model fissions and fusions (t). In International
Conference on Automated Software Engineering (ASE). IEEE, 115-125.

Vu Le and Sumit Gulwani. 2014. Flashextract: A framework for data extraction
by examples. In ACM SIGPLAN Notices, Vol. 49. ACM, 542-553.

Xuan-Bach D Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser.
2017 (to appear). JFIX: Semantics-Based Repair of Java Programs via Symbolic
PathFinder. In International Symposium on Software Testing and Analysis (IS-
STA’1?).

Xuan Bach D. Le, Quang Loc Le, David Lo, and Claire Le Goues. 2016. Enhanc-
ing Automated Program Repair with Deductive Verification. In International
Conference on Software Maintenance and Evolution (ICSME). 428-432.

[26]

[27]

(28]

(31]

(32]

(33]

(35]

[36]

(37]

(38]

[44]

[45]

[46]

[47]

Xuan-Bach D Le, Tien-Duy B Le, and David Lo. 2015. Should fixing these
failures be delegated to automated program repair?. In International Symposium
on Software Reliability Engineering (ISSRE). 427-437.

Xuan-Bach D Le, David Lo, and Claire Le Goues. 2016. Empirical study on
synthesis engines for semantics-based program repair. In International Conference
on Software Maintenance and Evolution (ICSME’16). 423-427.

Xuan Bach D Le, David Lo, and Claire Le Goues. 2016. History driven pro-
gram repair. In International Conference on Software Analysis, Evolution, and
Reengineering (SANER). IEEE, 213-224.

Claire Le Goues, Michael Dewey-Vogt, Stephanie Forrest, and Westley Weimer.
2012. A systematic study of automated program repair: Fixing 55 out of 105 bugs
for $8 each. In International Conference on Software Engineering (ICSE’12). 3-13.
Claire Le Goues, Neal Holtschulte, Edward K Smith, Yuriy Brun, Premkumar
Devanbu, Stephanie Forrest, and Westley Weimer. 2015. The ManyBugs and
IntroClass benchmarks for automated repair of C programs. Transactions on
Software Engineering (TSE) 41, 12 (Dec. 2015), 1236-1256.

Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Transactions
on Software Engineering 38, 1 (2012), 54-72.

Fan Long and Martin Rinard. 2015. Staged Program Repair with Condition Syn-
thesis. In European Software Engineering Conference and International Symposium
on Foundations of Software Engineering (ESEC/FSE). 166-178.

Fan Long and Martin Rinard. 2016. An analysis of the search spaces for generate
and validate patch generation systems. In International Conference on Software
Engineering (ICSE). ACM, 702-713.

Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Symposium on Principles of Programming Languages (POPL).
298-312.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2015. Directfix: Looking
for simple program repairs. In International Conference on Software Engineering
(ICSE). IEEE Press, 448-458.

Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: Scal-
able multiline program patch synthesis via symbolic analysis. In International
Conference on Software Engineering (ICSE). IEEE, 691-701.

Hoang Duong Thien Nguyen, Dawei Qi, Abhik Roychoudhury, and Satish Chan-
dra. 2013. Semfix: Program repair via semantic analysis. In International Confer-
ence on Software Engineering (ICSE). IEEE Press, 772-781.

Corina S Pasdreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter
Mehlitz, and Neha Rungta. 2013. Symbolic PathFinder: integrating symbolic
execution with model checking for Java bytecode analysis. Automated Software
Engineering 20, 3 (2013), 391-425.

Yuhua Qi, Xiaoguang Mao, Yan Lei, Ziying Dai, and Chengsong Wang. 2014.
The strength of random search on automated program repair. In International
Conference on Software Engineering (ICSE). ACM, 254-265.

Zichao Qi, Fan Long, Sara Achour, and Martin Rinard. 2015. An analysis of
patch plausibility and correctness for generate-and-validate patch generation
systems. In International Symposium on Software Testing and Analysis (ISSTA).
ACM, 24-36.

Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark
Barrett. 2015. Counterexample-guided quantifier instantiation for synthesis in
SMT. In International Conference on Computer Aided Verification (CAV). 198-216.
Rishabh Singh and Sumit Gulwani. 2016. Transforming spreadsheet data types
using examples. In ACM SIGPLAN Notices, Vol. 51. ACM, 343-356.

Edward K Smith, Earl T Barr, Claire Le Goues, and Yuriy Brun. 2015. Is the cure
worse than the disease? overfitting in automated program repair. In Proceedings
of the 2015 10th Joint Meeting on Foundations of Software Engineering. ACM,
532-543.

Armando Solar-Lezama, Rodric Rabbah, Rastislav Bodik, and Kemal Ebcioglu.
2005. Programming by sketching for bit-streaming programs. In ACM SIGPLAN
Notices. ACM, 281-294.

Shin Hwei Tan, Hiroaki Yoshida, Mukul R Prasad, and Abhik Roychoudhury.
2016. Anti-patterns in search-based program repair. In International Symposium
on Foundations of Software Engineering. ACM, 727-738.

G. Tassey. 2002. The economic impacts of inadequate infrastructure for software
testing. Planning Report, NIST (2002).

Ferdian Thung, Xuan-Bach D Le, and David Lo. 2015. Active semi-supervised
defect categorization. In International Conference on Program Comprehension.
IEEE Press, 60-70.

Willem Visser. 2016. What makes killing a mutant hard. In International Confer-
ence on Automated Software Engineering (ASE). ACM, 39-44.

Westley Weimer, Zachary P Fry, and Stephanie Forrest. 2013. Leveraging program
equivalence for adaptive program repair: Models and first results. In International
Conference on Automated Software Engineering (ASE). 356—-366.

Westley Weimer, ThanhVu Nguyen, Claire Le Goues, and Stephanie Forrest.
2009. Automatically finding patches using genetic programming. In International
Conference on Software Engineering (ICSE). IEEE, 364-374.

Yingfei Xiong, Jie Wang, Runfa Yan, Jiachen Zhang, Shi Han, Gang Huang, and
Lu Zhang. 2017. Precise condition synthesis for program repair. In International
Conference on Software Engineering (ICSE). IEEE Press, 416-426.

http://www.sygus.org/
https://hal.archives-ouvertes.fr/hal-01272126/document
http://dx.doi.org/10.1145/1806799.1806833
http://dx.doi.org/10.1145/1806799.1806833

ESEC/FSE’17, September 4-8, 2017, Paderborn, Germany Xuan-Bach D. Le, Duc-Hiep Chu, David Lo, Claire Le Goues, and Willem Visser

[52] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clément, Sebastian Lame- Automatic Repair of Conditional Statement Bugs in Java Programs. Transactions
las, Thomas Durieux, Daniel Le Berre, and Martin Monperrus. 2016. Nopol: on Software Engineering (2016).

	Abstract
	1 Introduction
	2 Motivating Example
	3 Methodology
	3.1 Automatic Example Extraction
	3.2 Repair Synthesis from Examples

	4 Evaluation
	4.1 Experimental setup
	4.2 Performance on IntroClass
	4.3 Performance on real-world programs
	4.4 Discussion, Limitations, and Threats

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

