
Robustness Inside Out Testing
Deborah S. Katz1 Milda Zizyte3 Casidhe Hutchison2 David Guttendorf2 Patrick E. Lanigan2 Eric Sample2

Philip Koopman3 Michael Wagner4 Claire Le Goues1

Abstract—Robustness testing is an important technique to
reveal defects and vulnerabilities in software, especially soft-
ware for Unmanned Autonomous Systems (UAS). We present
Robustness Inside Out Testing (RIOT) as a technique directed at
finding failures in autonomy systems that are able to be activated
from external interfaces. The technique consists of four main
steps: unit-level robustness testing, generalization, permeability
analysis, and activation. Each of these steps yields a valuable
deliverable in the testing process, and, when applied in succession,
expands a unit-level bug to an external interface. RIOT has the
following advantages over traditional robustness testing: it finds
faults faster, it can find faults missed by traditional approaches,
it identifies faults that can be triggered from inputs at an external
interface, and it produces useful artifacts to aid in fault diagnosis
and repair. In this paper, we outline each step of the RIOT process
and provide an example of RIOT finding a bug on a real system
that would not have been discovered using existing techniques.

Index Terms—robustness, autonomous systems, software qual-
ity, software testing

I. INTRODUCTION

Robustness testing has proven to be an effective way to
find important vulnerabilities that threaten dependability in
Unmanned Autonomous System (UAS) software [1]. How-
ever, while robustness testing at the unit level often reveals
vulnerabilities in deeply-buried software modules, prior work
does not present a scalable or automated way to determine
which of these vulnerabilities can lead to actual system failures
and thus need urgent fixes. Robustness testing at the system
level, by contrast, often requires more time and may fail to
discover internal vulnerabilities. In this paper, we summarize
the Robust Inside Out Testing (RIOT) project, which addresses
these shortcomings by finding unit-level failures (“inside”) and
assessing whether those defects can be activated from external
interfaces (“out”).

RIOT’s objective is to increase robustness testing’s ability to
find defects deep within complex UAS software, specifically

This project was funded by the Test Resource Management Center (TRMC)
Test and Evaluation / Science & Technology (T&E/S&T) Program through
the U.S. Army Program Executive Office for Simulation, Training and Instru-
mentation (PEO STRI) under Contract No. W900KK-16-C-0006, “Robustness
Inside-Out Testing (RIOT).” DISTRIBUTION STATEMENT A - Approved
for public release; distribution is unlimited. NAVAIR Case #2020-129.

1School of Computer Science, Carnegie Mellon University dskatz and
clegoues@cs.cmu.edu

2National Robotics Engineering Center, Carnegie Mellon
University fhutchin, dguttendorf, planigan and
esample@nrec.ri.cmu.edu

3Deptartment of Electrical and Computer Engineering, Carnegie Mellon
University milda and koopman@cmu.edu

4Edge Case Research (work performed while at National Robotics Engi-
neering Center) mwagner@edge-case-research.com

Unit Level System Level

Minimization
Robustness

Testing

Generalization

Permeability
Analysis

Activation

Failure
Inducing

Log

Relevant
Fields

List

Predictor

Permeable
Fields List

RIOT Architecture
Diagram

Pipeline Step

Output (Artifact)

Output Passing

Fig. 1. The RIOT architecture diagram.

those that can be activated from external inputs. To do so,
RIOT begins with unit-level robustness testing and uses a
suite of chained tools to determine whether any discovered
faults can be triggered via external interface. This approach
benefits from the speed of unit-level robustness testing, while
providing information about vulnerabilities from a full system
perspective. The steps in the RIOT process generate results that
are informative to developers for debugging and bug triage.

Compared to traditional testing approaches, RIOT
• finds faults faster;
• finds faults missed by traditional approaches;
• prioritizes faults by highlighting those that can be trig-

gered through an external interface; and
• produces useful artifacts at each step to aid in the process

of diagnosing and repairing faults.

II. PROCEDURE

Figure 1 shows the general architecture of the RIOT system.
RIOT begins with unit-level robustness testing, which is dis-
cussed in Section II-A. Robustness testing reveals failures in
a software module and, for each failure, produces a log of the
input messages that triggered the failure. The generalization
step, explained in Section II-B, includes three sub-steps:
minimization, relevant field identification, and extrapolating
a unit-level rule that describes the failure-triggering inputs.
Overall, generalization extracts a general rule (predictor) that
explains the properties of the failure-inducing log that cause
the unit to fail. For example, a predictor might be that a failure
can be triggered when a particular input value is very large.

The backchaining process then attempts to discover a set of
system-level inputs that cause this unit-level input rule to be
satisfied, resulting in a failure. Permeability analysis, discussed
in Section II-C, determines which system-level inputs affect
the values of the fields relevant to the unit-level failure.
Activation, discussed in Section II-D, finds values for the
identified system-level inputs that result in the unit-level inputs
satisfying the previously-identified rule.

When the RIOT toolchain is successful, the final product is
a log of system-level input messages that can be replayed to
activate a unit-level fault discovered in robustness testing.

A. Robustness Testing

Robustness testing is a variant of software testing that
evaluates robustness, or “the degree to which a system or
component can function correctly in the presence of invalid
inputs or stressful environmental conditions” [2].

The robustness testing portion of RIOT is built on the Au-
tomated Stress Testing for Autonomy Architectures (ASTAA)
technique that our team previously developed [1], which in
turn, draws on earlier work on the Ballista project [3], [4].
These approaches use the core idea that unexpected values,
such as -1 or NaN, can cause failures when used as inputs.
Failures are safety violations, such as software crashes or
specification violations (e.g., speed limits). To this end, the
approach maintains a dictionary of exceptional values for each
parameter type, gathered over years of experimentation. An
ASTAA test-run exercises a representative execution of an
autonomy system while injecting exceptional values into a
portion of messages passed among system components. When
ASTAA causes a module to fail, it generates a log containing
all messages sent during that execution. These logs can be
used to replay the execution and reproduce the test failure.

RIOT robustness testing applies the same testing approach
at the unit level. This is much faster than testing a whole
system, which often involves the time-consuming processes of
spinning up a simulator or field testing on real hardware [5].
This means that more tests can be run in the same amount
of testing time. Additionally, applying these techniques at the
unit level may reveal bugs in software units that are not easily
encountered when testing at the system level, even in cases
where the fault can be activated from the system interface.
See Section III for an example of such a fault.

Usefully, the output of robustness testing is a message log
that can be replayed to reproduce the failure and assist in
debugging. The results of a suite of robustness tests can also
be used in summary, as a metric for the robustness of a system
component. For example, a high failure rate can indicate low
component robustness.

B. Generalization

The next step, generalization, takes a failure-inducing log
found in robustness testing and extracts a rule that more
generally describes the unit-level inputs that induce the failure.

Generalization involves three steps: (1) minimization, (2)
identification of relevant fields, and (3) extrapolation of a unit-

level rule to describe the conditions, or input values, on the
module that must be present in order for the violation to occur.

a) Minimization: Minimization, previously described in
Hutchison et al. [1], starts with the failure-triggering log from
the robustness testing step. It uses delta debugging [6] to
produce a minimal set of log messages necessary to trigger
the failure during replay. This minimal message log is much
smaller that the original log, usually only containing a few
messages. This allows tests to be run much faster, as well as
reducing the number of messages that need to be considered
in subsequent steps.

b) Identification: Our team previously outlined the pro-
cedure for identifying relevant fields in a failure-inducing
log [1], [7]. Test logs can have very high dimensionality,
both in (a) the number of messages they contain and in (b)
the number of fields in each message. Rule learning can
still be difficult or even intractable with a minimized log
due to the large numbers of fields within each message. The
ASTAA project found that many bugs could be activated by
manipulating only a single field or several fields within a
single message. Thus, identifying these fields provides more
information about the test case and reduces the search space
when extrapolating a unit-level rule.

The RIOT process uses a portion of the Hierarchical Product
Set Learning (HPSL) algorithm [7] as a method for identifying
relevant fields. This algorithm identifies both (a) fields whose
exceptional values caused the fault, and (b) those fields whose
nominal values are necessary for the fault to be exercised.
For example, an exceptional speed value may cause a safety
violation, but only when the mode field is also set to a certain
nominal value. The HPSL algorithm would identify both of
these fields as relevant, as both fields must take on specific
values for the fault to be triggered.

This list of fields is necessary for the next step of generaliza-
tion. It also highlights the variables that cause the fault in the
software unit, which can be extremely useful for developers
trying to track down the source of a bug.

c) Extrapolation: The final step of generalization is to
find the unit-level rule that describes the fault-triggering input
conditions. This is done by running versions of the minimized
log, where the values of the relevant fields are systematically
altered. This exploration is more efficient due to the shorter
test case runtime of the minimized log and the reduced search
space of the relevant fields.

We use a variety of approaches to learn the input constraints,
including the latter part of the HPSL algorithm and decision
trees [7]. While other learning algorithms could apply, we
have chosen those that generate rules that are easily human
interpretable, e.g., as a discrete set of values or range of bounds
on a field.

This unit-level rule, in addition to being a useful description
of the input conditions that activate the fault for debugging,
also provides a large goal area for the RIOT process to aim
towards when trying to activate a fault from an external
interface. While a single unit-level input pattern discovered
during robustness testing may not be reachable by manipulat-

ing system inputs, other unit-level input patterns that satisfy
the generalization pattern may be reachable.

This step produces a predictor, which outputs whether a
given unit-level test case would trigger the fault if replayed.
This predictor is used in activation (in Section II-D) for finding
a system input that will trigger the fault.

C. Permeability Analysis
We begin the process of backchaining — or trying to find a

system-level input that results in the fault-triggering inputs at
the unit level — with permeability analysis. Permeability finds
relationships between system-level input values and the values
at the input to the unit where the fault occurs. In other words,
permeability identifies which external inputs, if any, can be
manipulated in order to change the values of the relevant fields
identified during generalization.

Permeability analysis in UASs is complicated because the
systems are often noisy and non-deterministic [8]. Rather than
relying on direct causality, RIOT’s permeability strategies use
statistical and machine learning approaches. By applying a
variety of different perturbations to system inputs, we use
analysis techniques for time series data to get a summary
of behavior of an internal system value under varying input
patterns. By comparing the behavior of the internal system
value with system inputs perturbed against the behavior of the
value with fixed system inputs, we determine if perturbing a
given system input affects that internal value.

While this technique will determine that there exists a
relationship between a system input and a relevant internal
value, it cannot determine the nature of that relation. Due
to the noisy, non-deterministic, and temporal nature of these
relationships, the relationship may not even be expressible. For
this reason, we cannot simply calculate the system-level input
values that could cause internal values to satisfy the rule found
during generalization, and thus need the final step, activation.

D. Activation
Activation completes the process of backchaining. Activa-

tion starts with the relevant system inputs found in perme-
ability analysis and analyzes the System Under Test (SUT) to
determine if there are values that can be sent to those external
system interfaces that can produce internal values that match
the unit-level activation rule, thereby triggering the failure.

To determine the values needed at the external interface,
RIOT uses an optimization algorithm, which attempts to min-
imize the distance between the values that the internal inputs
take during an experiment and the values those internal inputs
need to take to satisfy the rule found during generalization.
For the purposes of the optimization, the rule is represented
as the surface of a polytope towards which the optimization
algorithm can drive the experiments by changing the values
of the relevant system-level inputs. In other words, we try to
minimize the distance to the fault activation, by manipulating
system inputs.

This step produces a replayable log of system-level inputs
that activates the fault. A test case provides a strong argument
that the fault is severe enough to need to be fixed.

III. EXAMPLE

To illustrate how the elements of RIOT can be used to
find a bug that would not be found using previous robustness
testing techniques at the external interface level, we present
an example on the Clearpath Robotics Husky robot [9]. This
is an autonomous rover that plans and executes a path.

By using robustness testing to manipulate the input to the
move_base node, we found a test case that causes the node
to crash. The input we mutated was a recording of one of the
provided example runs of the system, filtered to only the few
thousand messages that were inputs to the move_base node.

Given this failure-inducing test case, we used generalization
to efficiently determine the rule for the input values that
would trigger the crash. First, delta debugging reduced the
mutated input log to a single /map_updates ROS mes-
sage [10]. Next we identifed the relevant fields for trigger-
ing the bug: /map_updates.x and /map_updates.y.
Using machine learning algorithms, we extrapolated a unit-
level rule: move_base crashed when the product of
/map_updates.x and /map_updates.y was negative or
very large.

From the generalized rule for crashing the move_base
node through the internal interface, we needed to determine if
this bug could be manifested in actual robot operation, i.e., if it
could be triggered by external sensor inputs. This backchain-
ing happened in two steps: we first determined that the values
of the /map_updates.x and /map_updates.y fields are
affected by changing some external interface values, and then
determined whether these external values could be changed in
a way to steer /map_updates.x and /map_updates.y
towards a negative or very large product.

Permeability showed that there were several external
fields caused that affected /map_update.(x,y), includ-
ing the velocity /odom.twist.linear.(x,y) and the
goalpoint goal.(x,y).1 We then used activation to find
if a combination of values on these inputs would cause
/map_update.(x,y) to have a negative or very large
product, in turn causing the move_base node to crash.
Indeed, we found that a set of goalpoints in the lower region
of the map triggered this crash. This shows that the fault can
be activated from an external interface and may warrant a high
prioritization for repair.

The crash zone for these inputs is a very specific range:
|goal.x| < 100 and −100 < goal.y < −80, as shown in
Figure 2. This is because the bug was not activated outside of
the map region, since the robot refuses to drive off the map.
Traditional dictionary-based testing at the external interface
level would not have tried this combination of values, because
these values are largely valid values and thus do not exist in
the dictionary. Fuzz testing would require aproximately 60,000
tests to have a 90% chance of hitting this region, assuming

1While the /map_updates inteface exists in the Husky codebase, it is ig-
nored in favor of sending a full /map message. To demonstrate backchaining,
we made a minor modification to the codebase to use the /map_updates
interface instead. Because the /map_updates interface is not used, the fault
is not activatable from an external interface in the original codebase.

Fig. 2. The region in which the Husky fault occurs: here shaded pink, below
the blue dotted line but within the map region, defined by the solid black line.

that the relevant system inputs are already known. Therefore,
this bug is a prime example of how robustness testing at the
unit level, generalizing the internal bug, and back-chaining to
external interfaces can discover sophisticated input patterns
for triggering bugs that can be missed when using traditional
robustness testing at the system interfaces.

IV. CONCLUSION

The RIOT toolchain is a set of testing and diagnosis
techniques, designed to detect unit-level faults and work
backwards to expose them at the system level. It makes use
of efficient message-based robustness testing techniques to
uncover vulnerabilities deep within a system, and follows on
with testing-driven approaches and machine learning to find
additional information about a fault. At each step, RIOT is able
to provide incrementally more information to the developer
about a defect. The toolchain culminates in an external threat
assessment, identifying which defects can be activated at the
system interface level. RIOT’s layered approach finds faults
efficiently and can find faults that are missed by traditional
system-level testing. In finding if faults can be exercised
externally, it highlights important faults for debugging.

RIOT’s procedure allows it to find defects with input values
that would not have otherwise been tested. These techniques
have the potential to find faults faster than many existing
techniques, such as field testing or fuzz testing whole systems.
These techniques also have the capability of finding faults that
would likely be missed by existing approaches — such as in
the example (Section III) in which RIOT finds a fault that
would have not have been found by dictionary- or fuzz-based
approaches at the external interface level.

To the best of our knowledge, little previous work tackles
stress testing robotic or autonomy systems, and much previous
work focuses on hardware. A historical analysis of robotic
system failures indicates that while attention to hardware is
warranted, software remains one of the major sources of
error [11]. Chu [12] performed practical robustness testing of a

middleware layer for autonomy systems. Among other obser-
vations, they noted the difficulty of testing large hierarchical
multi-component systems. The RIOT approach is specifically
directed at complex UAS architectures.

By using a suite of testing tools, RIOT can provide fault
detection and some fault diagnosis and triage capabilities while
reducing load on developers. By creating user-interpretable
results at each step in the pipeline, RIOT can provide utility
even when a limited testing budget does not allow for execu-
tion of every step. While the final system-level diagnosis steps
(permeability and activation) typically require a simulator or
other framework for executing the whole system, all prior steps
can be performed by simply executing a single software unit.
This means that RIOT can provide useful results even in cases
where a full system simulation is unavailable.

Due to the automated nature of these testing tools, they are
highly scaleable and benefit from parallel execution of test
cases. The number of robustness tests that can be executed in a
given timeframe, for example, scales linearly with the number
of test execution threads. In cases where algorithms within
RIOT are not trivially parallelizable, such as in tree-based
searches, parallelization can still reduce overall testing time at
the cost of increasing the number of total test executions. RIOT
can thus scale well even in a high performance computing or
cloud environment.

RIOT’s automation, scalability, and utility at every step
in the pipeline make it an ideal tool for detecting faults in
software dependability at little expense to a development team.

REFERENCES

[1] C. Hutchison, M. Zizyte, P. E. Lanigan, D. Guttendorf, M. Wagner,
C. Le Goues, and P. Koopman, “Robustness testing of autonomy soft-
ware,” in International Conference on Software Engineering - Software
Engineering in Practice, ser. ICSE-SEIP ’18, 2018, pp. 276–285.

[2] J. Radatz, A. Geraci, and F. Katki, “IEEE standard glossary of software
engineering terminology,” IEEE Std 610121990, 1990.

[3] N. P. Kropp, P. J. Koopman, and D. P. Siewiorek, “Automated robustness
testing of off-the-shelf software components,” in Fault-Tolerant Comput-
ing, ser. FTCS ’98, June 1998, pp. 230–239.

[4] P. Koopman, K. DeVale, and J. DeVale, Interface Robustness Testing:
Experience and Lessons Learned from the Ballista Project, 2008, ch. 11,
pp. 201–226.

[5] A. Bihlmaier and H. Wörn, “Robot unit testing,” in International
Conference on Simulation, Modeling, and Programming for Autonomous
Robots. Springer, 2014, pp. 255–266.

[6] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?” in
Joint Meeting of the European Software Engineering Conference and the
Symposium on The Foundations of Software Engineering, ser. ESEC/FSE
’99, 1999, pp. 253–267.

[7] P. Vernaza, D. Guttendorf, M. Wagner, and P. Koopman, “Learning prod-
uct set models of fault triggers in high-dimensional software interfaces,”
in Intelligent Robots and Systems, ser. IROS ’15, 2015, pp. 3506–3511.

[8] C. Pecheur, “Technical report: Verification and validation of autonomy
software at NASA,” Hanover, MD, USA, August 2000.

[9] Clearpath Robotics. Husky unmanned ground vehicle. Accessed:
2020-01-24. [Online]. Available: http://clearpathrobotics.com/husky-
unmanned-ground-vehicle-robot/

[10] ROS. Ros.org — powering the world’s robots. Accessed: 2020-01-24.
[Online]. Available: http://ros.org

[11] J. Carlson and R. R. Murphy, “How UGVs physically fail in the field,”
IEEE Transactions on Robotics, vol. 21, no. 3, pp. 423–437, June 2005.

[12] H.-N. Chu, “Test and evaluation of the robustness of the functional
layer of an autonomous robot,” Ph.D. dissertation, Institut National
Polytechnique de Toulouse - INPT, Sep 2011. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-00627225

