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Abstract—Software frameworks make developing applications
for a specific domain easier than doing so from scratch. Unfor-
tunately, frameworks can also place unexpected requirements on
a developer’s application, which can, in turn, lead to application
bugs in the development process. We propose an automated
technique for repairing violations of state-based framework
requirements, FrameFix. First, developers of a framework can
encode state-based framework requirements. Then, FrameFix
automatically checks whether a developer’s application follows
the encoded requirements. Once a violation of these requirements
has been detected, FrameFix tries three different approaches —
reordering method calls, moving method calls to different method
definitions, and comparing the faulty method to similarly defined
methods on GitHub. These repair approaches are based on the
principles of how frameworks interact with framework applica-
tions: object protocols and inversion of control. To demonstrate
that these principles can be used to aid automated repair for
framework applications, we created a sample implementation
of FrameFix for Android applications. Our evaluation shows
that FrameFix is effective, repairing both real bugs in real
applications, and a large number and variety of injected defects.

Index Terms—Frameworks, Automated Repair, API

I. INTRODUCTION

Software frameworks make developing applications for a
specific domain easier than doing so from scratch. A frame-
work is a generic piece of software or set of libraries that
developers can use to develop client applications in a domain,
typically by conforming to a specific prescribed architecture.
[1]. For example, the Android framework provides a reusable
interface to interact with the mobile device hardware, allow-
ing application developers to only code the unique parts of
their application. Software frameworks are widely used, and
substantially increase the productivity of professional software
developers [2]. The importance of frameworks is demonstrated
by the large number of framework applications. For instance,
the Google Play Store contained 2.9 million applications in
December 2019, all built on the Android framework [3].

While developers commonly use frameworks, they can still
encounter significant challenges in using them correctly. Of the
top 20 tagged question categories on StackOverflow, 6 corre-
spond to framework categories, containing more than 3 million
questions [4]. New framework application developers encoun-
tered difficulties understanding how their changes affect an ap-
plication and in selecting the right framework interface to solve

their problem [5]. Developers have been known to wait days
for answers to framework-specific questions on forums [6],
demonstrating both the difficulty of developing framework
applications and the challenges associated with finding the
information necessary to do so. Framework development also
poses unique debugging challenges to developers [7]. For
example, state-based issues, problems that arise from the state
of objects in the framework (a common feature of framework
programming), are especially challenging, because developers
have to track how a framework (usually invisibly) modifies the
states of objects in internal code. Overall, debugging support
for framework development is still inadequate, and certain
features of framework applications, like state manipulation,
are particularly challenging.

Despite these challenges, we observe that frameworks ex-
hibit key features that can help in developing automated
tooling to improve the debugging process:

1) the heavy use of object protocols - requirements that
objects must be in the correct state to perform an ac-
tion. Because frameworks heavily use object protocols,
methods commonly fail because they occur in the wrong
state, and can be moved to a location where objects are
in the correct state.

2) due to inversion of control, the way frameworks call ap-
plications to perform application specific actions, frame-
work applications often contain the same callback method
signatures. If a problem occurs in one of these callback
methods, there is likely an application that implements
the callback correctly on GitHub.

We propose an end-to-end static program repair technique
that automatically repairs state-based framework errors, a par-
ticularly challenging class of framework debugging problems.
In our approach, someone knowledgeable with the frame-
work (likely the framework developer) encodes directives [8]
(method call requirements not enforced by the type system)
using a specification language and provides the starting pa-
rameters of the repair process. Application developers then
run analyses generated from the specification language to find
and fix defects in their client applications. If the analysis
finds an error, then FrameFix generates possible repairs guided
by the key features that differentiate framework application
repair. Proposed repairs are evaluated with the analysis and an



Label Directive Explanation Typical Error

GetActivity getActivity can only be called
when the Fragment has been at-
tached to an associated Activity.

A Fragment must be in an Activity-attached state,
otherwise getActivity returns null

NullPointerException

OptionsMenu To use a Fragment’s
OptionsMenu, the application
must contain both the call
setHasOptionsMenu(true),
and define
onCreateOptionsMenu.

If the Fragment is in the (static) has-
OptionsMenu state, through the presence of a defined
onCreateOptionsMenu, then the Fragment
must call setHasOptionsMenu; Alternatively, if
the Fragment can request OptionsMenu (through
a call to setHasOptionsMenu(true)), then it
must start in the has-OptionsMenu state.

The OptionsMenu will
not appear.

SetArguments setArguments cannot be called
until after the Fragment is instan-
tiated.

Once a Fragment instance has passed out of its
instantiation state, a call to setArguments is illegal

RuntimeException

Inflate The onCreateView method in a
Fragment that will attach to the
user interface, should return the re-
sult of a call to inflate where the
last parameter is false.

If the Fragment will become part of the Activity
user interface (a static state designation) then the frag-
ment’s View must be initialized correctly.

Crash due to an internal
framework error.

FindViewById setContentView must be called
before findViewById.

Android does not associate an ID with a View until
the View is in the initialized state.

RuntimeException

GetResources getResources cannot be called
in a background Fragment.

getResources can only be called on a Fragment
when it is attached to an Activity, a state that a
background Fragment is not in by definition.

RuntimeException

SetInitialSavedState setInitialSavedState cannot
be called after the Fragment is
attached to an Activity.

A Fragment cannot be initialized once it is in the
attached-to-Activity state.

RuntimeException

SetTheme setTheme cannot be called after
setContentView.

It is an error for an Activity to set an application
theme after it has entered the View-initialized state

RuntimeException

SetPackageSetSelector setPackage and setSelector
cannot be called on the same
Intent instance.

If an Intent instance is already in the package-set or
selector-set state, it cannot enter the other state.

RuntimeExcpeption

TABLE I: Directives used in our study. The first column is a shorthand label for each directive; the second is the directive proper, further
explained in the third column. The last column shows the result of violating the directive.

application’s test cases.
We instantiate our approach in a proof-of-concept tool

called FrameFix, which addresses such defects in Android
applications. We evaluate FrameFix on a large subset of the F-
Droid dataset [9]. We demonstrate in particular applicability,
in terms of the prevalance of the types of potential defects
we address, and utility in terms of the variety and type of
repairs for those errors it can construct. We find that FrameFix
is able to repair 4 problems in real application and 91% of
automatically injected errors.

Our approach is novel in its end-to-end treatment of the
problem of finding and fixing state-based framework mis-
takes. Both static [10], [11] and dynamic [12] checkers have
been proposed to identify improper interactions between an
application and its underlying framework. These techniques
are useful, but evidence suggests that developers struggle
to fix framework mistakes even once the problem has been
identified or pointed out to them explicitly [7]. More recent
work targets the repair of crashing Android applications when
a user-provided event sequence can recreate the crash [13],
but without the end-to-end static checking we propose that
can detect problems that do not causes application crashes.
Our approach also does not require framework developer and
application developers to write contract specifications [14] to
guide repair.

Our primary contributions are:

• An automated repair technique based on framework’s
heavy use of object protocols and inversion of control
to guide the automated repair process.

• An instantiation of the technique for Android applica-
tions, called FrameFix1.

• An evaluation on F-Droid, a set of 1,964 open source
Android applications

We begin by discussing the necessary background on frame-
work bugs in Android (Section II). We then discuss the
approach we used to create FrameFix in Section III and our
evaluation of FrameFix in Section IV. We end the paper
with a discussion of limitations (Section V), related work
(Section VI), and finish with conclusions (Section VII).

II. STATE-BASED FRAMEWORK BUGS

We begin by introducing background on framework devel-
opment (Section II-A), as well as the types of defects we target
with our repair approach (Section II-B). We instantiate our
approach for Android and evaluate it in that context, and so
include specifics for the Android domain.

A. Framework Development

Frameworks provide a set of interfaces and classes that
reduce the time required to create a new program in a par-
ticular domain [15]. Developers create applications to achieve

1http://bit.ly/3qg7M9v

http://bit.ly/3qg7M9v


Fig. 1: The high-level FrameFix process. A framework developer creates a check specification (Section III-A) and defines the variables
required to perform associated repairs. A developer of a framework client application can run the resulting analysis check to detect problems.
FrameFix will attempt to repair detected problems by generating possible fixes (Section III-C). If FrameFix is able to generate a repair that
passes both the analysis check and all the application’s test cases, the application is considered fixed.

specific goals by writing plugins, or client applications, that
use the framework. For example, Android applications are
plugins to the Android framework. A framework typically
calls plugin code through inversion of control, a design in
which the core framework code, not the application-specific
code, controls an application’s data and execution flow [1].
Inversion of control is typically implemented by defining
callback methods with well-specified method signatures in
the framework application, which the framework calls when
needed. Another important aspect of frameworks is object
protocols, or ordering constraints on calls to an object’s
methods [16]. While object protocols appear in many applica-
tions, object protocols are especially prevalent in framework
applications, where frameworks change the state of objects in
internal framework code. Both inversion of control and object
protocols require developers to keep track of often-invisible
object states, increasing the chance of state-based problems.
Finally, though not directly germane to our approach, frame-
works commonly require applications to conform to a specified
structure, and to contain certain declarative artifacts, non-
source code files that contain configuration information [1].

We implemented our proof-of-concept for Android because
it is the most popular framework on StackOverflow, and
thus most likely to have a demonstrable need for state-based
automated repair. Issues in state-based development issues in
Android have also been previously studied [7]. In an An-
droid application, the Activity class is the main application
entry point. Fragments are reusable subcomponents of an
Activity. Intents are the objects that Android passes be-
tween applications, which facilities inter-application commu-
nication. The directives we discuss in this paper prominently
feature these classes. An Android application is packaged into
one or more executable files called APKs (Android Packages),
which are used by FrameFix in the static analysis and to
evaluate if a source-code level repair succeeded.

B. State-based directive violations in Android

Our repair approach targets framework-specific mistakes,
in a way that should be useful across many applications
built against a given framework. Directives are unexpected or

surprising API specifications for how to use a class or method
correctly [8]. By focusing on framework directives, we are
able to focus on documented development challenges that are
not dependent on a specific framework application. We are
particularly interested in addressing violations of state-based
directives which are particularly difficult for developers [7].

Directives are often subtle, and expressed by the framework
developers in READMEs, tutorials, comments, or other forms
of documentation surrounding a framework; it is presently the
responsibility of the application developers to follow them
correctly. For illustration (here) and (in subsequent sections)
evaluation, we collected a set of Android-specific directives
that can be violated, leading to bugs in real applications. We
further validated these directives by finding StackOverflow
questions about them, indicating that and how they have been
violated in real development situations. We were able to find
questions corresponding to all but one of the directives in
the dataset; we further replicated the violations using sample
Android applications (as we revisit in Section IV-C). Table I
summarizes our case study Android state-based directives.

III. FRAMEFIX APPROACH

Figure 1 shows a high-level overview of FrameFix, an end-
to-end approach for statically detecting and repairing certain
classes of framework-specific errors. At framework devel-
opment time, a knowledgeable engineer specifies directives
relevant to correct framework usage, in a way that allows for
statically detecting violations (Section III-A) and, ultimately,
repairing them.2 The cost of writing these specifications is
highly amortized, and can be considered part of the process
of documenting correct usage (which developers already do).
An application developer can then use FrameFix to statically
check for directive violations in client plug-ins (Section III-B)

FrameFix attempts to construct repairs for detected vio-
lations (Section III-C). The static violation report serves to
localize the error. FrameFix leverages the unique aspects of
framework application development to guide repair of frame-
work applications: the object protocols and inversion of control

2Inferring specifications from natural language documentation or source
code analysis may be possible, but is left for future work.



⟨expression⟩ ::= ⟨control-expression⟩ | ⟨assertion-expression⟩

⟨control-expression⟩ ::= and(⟨expression⟩, ⟨expression⟩)
| or(⟨expression⟩, ⟨expression⟩)
| if(⟨expression⟩) then (⟨expression⟩)
| not(⟨expression⟩)
| ⟨created-control-expression⟩

⟨assertion-expression⟩ ::= ⟨simple-assertion⟩ | ⟨context-assertion⟩

⟨simple-assertion⟩ ::= isDefined(⟨item⟩)
| ⟨created-simple-assertion⟩

⟨state⟩ ::= list(⟨methods-where-true⟩)
| ⟨created-state-representation⟩

⟨context-assertion⟩ ::= ⟨context⟩.⟨assertion-for-context⟩

⟨context⟩ ::= methodToCheck(⟨method-call⟩)
| instanceOf(⟨type⟩)
| checkSubclassesOf(⟨class⟩)
| checkClassesWithOuterClassThatAreSubclassOf(⟨class⟩)
| ⟨created-context⟩

⟨assertion-for-context⟩ ::= ⟨simple-assertion⟩
| ⟨simple-context-assertion⟩
| ⟨control-expression⟩
| ⟨context-assertion⟩

⟨simple-context-assertion⟩ ::= contains(⟨method-call⟩)
| in(⟨method-call⟩, ⟨state⟩)
| secondCannotOccurBeforeFirst(⟨method-call⟩, ⟨method-call⟩)
| firstCannotFollowSecond(⟨method-call⟩, ⟨method-call⟩)
| methodCallExclusiveOr(⟨method-call⟩, ⟨method-call⟩)
| ⟨created-assertion-for-context⟩

⟨item⟩ ::= ⟨file-type⟩ | ⟨method-call⟩

⟨method-call⟩ ::= ⟨method⟩
| ⟨method⟩(⟨parameter-list⟩)

⟨parameter-list⟩ ::= ⟨parameter⟩
| ⟨parameter⟩, ⟨parameter-list⟩

⟨parameter⟩ ::= ⟨wild-card⟩
| ⟨constant⟩ | ⟨identifier⟩

Fig. 2: Grammar for creating heuristic directive analyses, including
assertions and control statements for combining them.

inherent in framework applications. Since frameworks often
internally change object states, FrameFix can move method
calls that have incorrect states to other parts of the application
with different states. Frameworks also implement inversion of
control through callbacks. FrameFix can search GitHub for
applications containing the same callback method signatures,
and then reuse code implementing the callbacks correctly.

FrameFix validates generated repairs using the static check,
as well as any application test cases. Following a standard
generate-and-validate repair paradigm [17], FrameFix attempts
multiple repairs until either a time limit is exceeded, or one
is found that satisfies all validation checks.

For some errors, it may be possible for a developer to
specify a fix template for that error type to fix the issue.
However, our goal was to create a repair process that could
apply to as many error types as possible and could could repair
more errors than the directives evaluated in this study.

A. Specification language

The first step in the FrameFix repair process is to statically
identify directive violations. Since directives written in natural
language are often imprecise and use meta-terms that do not
clearly map to code, a knowledgeable developer must translate

directives into the specification language. While this transla-
tion may require expert knowledge, the directives only need
to be specified once per framework. Thus, the specifications
that we have already encoded do not need to rewritten.

Figure 2 provides the grammar for our specification lan-
guage, which includes both assertions (which define checks),
and control statements, to logically compose assertions. A
context assertion limits the assertion to a part of the code
base. For example, to check that Fragment classes contain a
definition for the onCreateOptionsMenu method, the con-
text assertion would be written as checkSubclassesOf("
Fragment").defines("onCreateOptionsMenu"). Other
examples of contexts include nested classes and method def-
initions. Contexts can be nested with the ‘.’ operator (e.g., a
method definition in subclasses of a certain class). A simple
assertion could check if the application defines a necessary
configuration file. Simple assertions do not require a context,
but can be modified by a context. In contrast, a simple-context-
assertion is a check that must have an associated context,
making it part of a context assertion. The created- checks are
possible extension points, such as created-context where users
can define their own context check.

Differing from a context, a state is a list of methods where
the desired object state is known to be true. The state is then
checked using the methods in the stack trace (i.e. if the static
path in the call-graph from the current method to the start
of execution contains this method call, then the application is
known to be in this state).

A method-call specifies the method call to look for in
the code, e.g., checking if setHasOptionsMenu is called
in onCreate, setHasOptionsMenu is the method-call,
while onCreate is the context. method-call has an op-
tional parameter-list, which adds parameter requirements.
For example, if the checker is only interested in cases of
setHasOptionsMenu when called with the parameter true,
true is specified as a required parameter. Required parameters
can either be constant values, which must be syntactically
equal to match, or identifiers, which match if the same object
reference is used across multiple method calls. A wild card
’*’ denotes a parameter that does not need to be matched.

Control-statements include standard first-order logic op-
erators like and, or, and not. if-then is provided as
convenient shorthand for compositions of assertions.

B. Statically identifying directive violations

To translate the specification to a static analysis check, the
assertions are converted into composable functions, which are
then combined using the control statements. The composable
functions perform different checks depending on the check
specified. Some functions check if a pattern exists in the
code (for example, contains checks if a method call occurs
in the expected location). Others checks for invalid method
call ordering using data flow (e.g., firstCannotFollowSecond).
in checks if calls of a known state exist in the all paths in the
call graph from the currently evaluated method to the start of



execution. This combined check produces a final count of the
number directive violations an application.

To illustrate, consider the FindViewById directive (Sec-
tion II-B). This directive translates to the specification lan-
guage (Section III-A) as

checkIfSubclassOf(“Activity”).
methodToCheck(“onCreate”).
secondCannotOccurBeforeFirst(
“setContentView”, “findViewById”))

This specification states that first, a related file contains a
class that is a subclass of Activity. If the file is a subclass
of Activity, then, in the onCreate method, require that
setContentView be called before findViewById. However,
only require the call order if a call to findViewById occurs in
the method (meaning that setContentView does not require
a following findViewById). While the check to only investi-
gate classes that are subclasses of Activity is not mentioned
in the directive, this context assertion is included because the
directive only applies to subclasses of the Activity class.

While not explicitly mentioned in the directive, the API
specification restricts the check to the onCreate method
because an Activity with a user interface should set the
user interface by calling setContentView in onCreate.
The checker will then check onCreate’s execution paths
to make sure that findViewById is not called before
setContentView.

C. Automatic repair of detected violations

As shown in Figure 1, to initialize a repair, the framework-
knowledgable developer defines select variables, including
methods of interest (up to two, the method or methods that
were checked), the likely methods containing calls to the
methods of interest if one exists (such as the onCreate
method), and search terms that can be used to narrow down
the GitHub search. These variables should be defined when
the check specification is written.

FrameFix tries three strategies to repair detected violations;
Figure 3 provides an overview. The strategies are ordered by
the likely worst-case time required:

1) Method reordering. Frameworks’ heavy use of object
protocols can lead to problems associated with calling
methods while in the wrong state, sometimes because
methods are called in the wrong order. One possible solu-
tion is to reorder the problematic calls. FrameFix there-
fore starts by exploring rearrangements of the methods
mentioned in the directive specification (Section III-C1).

2) Method movement. Directive violations can also be
caused by calling methods when the application is not in
the appropriate state. Thus, FrameFix next tries moving
implicated method calls to alternative locations alto-
gether, seeking one that corresponds to an appropriate
state (Section III-C2).

3) Callback-informed search. Inversion of control is typi-
cally implemented via methods with framework-specific

type signatures and, as such, applications typically in-
teract with the framework through highly rigid API calls.
This provides a filtering mechanism to constrain the code
of the repair search space. Thus, if the preceding attempts
do not work, FrameFix searches GitHub for code to
inform a candidate repair, based on the method signatures
used in the code under repair (Section III-C3).

If any proposed repair passes both the static checker and any
available application test cases, then the application is consid-
ered successfully repaired. If none of the changes produce a
fix, then FrameFix was unsuccessful in fixing that error.

1) Method order repair: Since frameworks heavily use
object protocols, in both internal framework code and in client
applications, a bug may correspond to a method call occuring
when an object is in the wrong state. For example, a call to
get a resource view item in Android cannot occur before the
view has been initialized (GetResources). In this case, the
Activity is performing steps in the wrong order, and the
calls could be valid if called in a different order. FrameFix
thus attempts to reorder method calls to produce possibly
interprodecural repairs. FrameFix only tries this approach if
multiple methods are mentioned in the directive specification,
and only tries to reorder the mentioned methods.

FrameFix generates three possible repairs for this strategy.
Assume that method foo should be called before method bar,
but bar occurs on line 3 and foo occurs on line 6, and that
line 4 uses the result of bar. The first proposed repair moves
foo before bar. The second proposed repair is to move line 3
and line 4 (the lines that call and use bar) after line 6 (the line
that uses foo). If neither of these repairs succeed, FrameFix
tries to delete the second method of interest (line 6 with foo).

2) Method move repair: Since frameworks often change the
state of objects internally, developers can call API methods in
the right order, but at program points when the framework
internals are in the incorrect state. This can occur when a
method call occurs in the wrong point of the framework life-
cycle or before other required state changes have occurred.
One example is that the Fragment method getActivity
can only be called after the Fragment has been completely
initialized (GetActivity). This type of violation can be fixed by
moving the problematic call to a different method body, where
hopefully the objects associated with the method call are in the
correct state. Methods in the class that is directly associated
with the problem under repair are tried first, followed by other
methods in the application. FrameFix uses this approach to
generate possible intraprocedural repair.

When an application implicitly calls a method on the current
object instance, moving the method to a new class or static
method requires adding the object instance to the method call.
When moving an implicitly called method, FrameFix first tries
to move the method call to locations where a variable instance
of that type already exists. If those locations do not produce
a fix, then, FrameFix creates a new instance of the object and
calls the method on that object in each new tried location.
These locations start with the static locations in the current
class file and then other methods in the application.



Fig. 3: The FrameFix repair process.

For example, assume there is a class Foo with a failing
implicit call to instance method bar. When the bar method
is moved to class Baz, first a new instance of Foo will be
created. Then that instance will call the bar method, so the
new code addition will compile. This is often needed for the
setArguments directive, where setArguments needs to be
called before the Fragment is instantiated.

When FrameFix moves certain method calls, it heuristically
tries to ensure that the parameters used in the method call
are still valid. It does this by scanning the preceding lines in
the method definition for references to variables used in the
moved call. FrameFix will then copy any preceding lines in the
current method where the parameters are altered. For example,
if one of the parameters are set in the preceding line, this
preceding line will also be copied when moving the method.
FrameFix also copies any relevant try-catch statements to the
new context.

3) Callback-based repair: The difficult part of using ref-
erence applications from GitHub is choosing the section of
code that can be used to obtain the fix. Our novel insight
to reduce this search space problem is that frameworks often
implement inversion of control through methods that have
the same signature across all applications. Our technique,
FrameFix, exploits this by trying to repair a faulty method
using methods with a similar signature off GitHub.

If the previous steps do not identify repairs, FrameFix
searches GitHub for applications that implement similar meth-
ods (determined by the name of the method) and other
keywords provided with the directive specification (e.g., for
inflate, the keywords ’inflate’ and ’Fragment’ are also in-
cluded). Once a matching application is found, the application
code from GitHub is reduced down to the method call of
interest (e.g., if the repair is set to look for instances of the
onViewCreate method, the application off GitHub is reduced
down to only the onViewCreate method). FrameFix will then
compare the method from GitHub to the method with the same
signature in the application to repair. (using the same example,
FrameFix compares the onViewCreate method from GitHub
to the onViewCreate method in the application to repair).

To compare the two methods, the methods are converted to
a list of method calls and a list of types per line, as shown in
Figure 4. The intuition behind this approach is the application
under repair likely needs to correct a method call or correct

the types in the method call. Thus, the application under repair
is first evaluated against the method from GitHub for method
call differences, and then for type differences.

First, the method calls per line are compared. If the line in
the GitHub application’s method is found to contain a method
that is not in the application under repair, that line is saved
as a possible line to add. If a line in the application under
repair contains method call that is not used in the GitHub
application’s method, then that line is saved in the possible
deletion list. The first proposed repairs will try to add a single
line from the line to add list to the application under repair.
If the proposed repairs do not pass the validation tests, then
the next proposed repairs will try to delete a single line from
the line to remove list. If deleting a single line does not
produce a valid fix, then the next repairs generated will try
all combinations of adding a single line from the line to add
list and removing a single line from the line to delete list.
This process repeats for adding and removing 2 or more lines
until all add/delete combinations have been proposed. When
lines are added from the GitHub application to the application
under repair, the instance variables in the lines are changed to
instance variable names with the same type in the application
under repair.

If the application under repair is still not fixed, FrameFix
will then recreate the addition and deletion list, but this time
by comparing the types of variables in the lines of the method
to compare. Lines are not directly compared (line 4 in one
method is not always compared to line 4 in the other method).
Instead, lines are compared on the order in which an instance
of that type is found (e.g., if a View instance occurs on line 3
and line 5 one method and line 2 and 4 in the other method,
then line 3 will be compared to line 2 and line 4 will be
compared to line 5), to avoid the case where an added line
always causes the following lines to not match. One exception
to evaluating the lines by type is that true and false are
treated as different types. If a line is found to contain a type
difference in the application under repair, then that line is
added to the lines to delete. If a line is found to have a unique
type in the application from GitHub, that line is added to the
list of lines to add. All combinations of adding and deleting
type lines are used to generate proposed fixes, the same way
FrameFix generated repairs using method difference.

If FrameFix is unable to find a successful repair, the process



1 @Override
2 public View onCreateView(
3 LayoutInflater inf, ViewGroup cont,
4 Bundle saved) {
5 View v =
6 inf.inflate(R.listView, cont, false);
7 dLE = new DLE(this, this, getActivity());
8 ((ListView) v.findView(R.DirList)).

setAdapter(dLE);
9 return v;

10 }

(a) The original code (simplified for presentation).

6 inflate()
7 DLE(), getActivity()
8 findView(), setAdapter()

(b) Code as a list of method
calls per line. Constructors
are included; lines can con-
tain multiple calls.

6 View, LayoutInflater, constant_reference,
ViewGroup, false

7 DLE
8 View, constant_reference, DirList
9 View

(c) Converted to types. R. references become
constant references. true and false are sep-
arate type values. this references and method
call return types are excluded (unless the call is
to a constructor) for implementation ease.

Fig. 4: An example of how a method definition is turned into the list of method calls and types in each line. The repair technique uses both
approaches to determine the differences between the application to repair and the reference application from GitHub.

is repeated on another sample application in the order returned
from a GitHub API request that contains the method name
of interest, any specified key terms from the directive, and
the most repository stars. This process is repeated until a set
timeout is reached, currently set at one hour.

IV. EVALUATION

We evaluated if the specification language could apply to
object protocols that it could encounter. We also evaluated
FrameFix with respect to three claims: 1) that the directive vio-
lations covered by FrameFix apply to diverse set of framework
applications, 2) that FrameFix works on real applications, and
3) that FrameFix can repair a diverse set of applications.

A. Specification evaluation

To evaluate if the API specification approach can apply to
a diverse set of specification requirements, we evaluated the
specification approach using the Beckman taxonomy of object
protocols [16]. Beckman manually classified the different
types of over 600 object protocols found in 4 programs or
libraries. Beckman provided an example protocol for each
category (except for the ‘other’ category, so we excluded
it). We attempted to encode the example protocols in our
specification language.

The encoded API specifications for each of the Beckman
taxonomy categories are shown in Table II. Five of the seven
examples translated easily into the specification language. For
the other examples, a new simple-context-assertions had to be
defined to limit the number of method calls for an object.
The Boundary category was the most difficult to translate into
our specification language, because the example checked a
dynamic property (limiting calls to the number of items in
the Iterator). While not a perfect solution, if we assume
that the number of valid calls can be determined statically
(in this example, we use seven), the specification language
can handle this case. Incorporating dynamic checks to the
language would address this issue, and is left to future work.
This evaluation shows our specification language can handle a
diverse set of specification requirements, but cannot perfectly
address all specification cases.

B. Applicability of directives covered

To investigate if the chosen directives apply to a large
percentage of Android applications, we implemented the spec-
ification language and static analyses using FlowDroid, an
Android static analysis tool [18]. We then collected 1,964
applications from F-Droid3, a catalog of open source Android
applications. FlowDroid, and thus the static analysis tools,
threw an error when analyzing 108 of the applications, so those
were removed from the dataset, leaving 1,856 applications to
analyze. We downloaded the applications and determined if
the applications used the methods mentioned in the directives
discussed in Table I. Table III shows how many applications
use each directive in the dataset. These percentages are calcu-
lated out of the number of applications in the dataset for which
FlowDroid was able to produce a call graph (1,865). The main
takeaway from this table is that at least one directive applies
to 84.7% of the applications in the dataset, demonstrating that
the directives covered in this investigation apply to wide range
of applications.

C. Repair of manually built applications

To evaluate the repair process, we manually created repair
scenarios which consisted of applications that violated the
nine directives mentioned in Table I. We created the repair
scenarios by starting with a base application that was either a
Google sample application4 or, if the directive did not apply to
the sample application, a default Activity application from
AndroidStudio. Then, if we had a StackOverflow question
that corresponded to the directive, we added code similar
to the code/scenario mentioned in the question to the base
application. For the violation that did not have a corresponding
question, we manually created code that violated the directive.

Our technique was able to fix seven out of the ten cases
(counting the two ways to violate OptionsMenu as different
cases). Three scenarios were not repaired due to limitations
in the current approach. For OptionsMenu, the technique is
unable to repair the case where onCreateOptionsMenu is

3https://f-droid.org/en/ (dataset: https://doi.org/10.5281/zenodo.3698376)
4github.com/googlesamples/android-LNotifications



Category Statement Specification

Initialization getEncoded cannot be called before init is called on
an AlgorithmParameters instance

instanceOf(“AlgorithmParameters”).
secondCannotOccurBeforeFirst(“init”,“getEncoded”)

Deactivation a closed BufferInputStream cannot be reopened instanceOf(“BufferInputStream”).
firstCannotFollowSecond(“open”,“close”)

Type qualifier a Collection.unmodifiableList instance cannot
call the add method of it’s List superclass

instanceOf(“Collection.unmodiableList”).not(contains(“add”))

Dynamic preparation For an Iterator instance, remove can only be called
after next

instanceOf(“Iterator”).firstMustOccurBeforeSecond(“next”,
“remove”)

Boundary there is a limited number of valid next calls to an
Iterator instance

instanceOf(“Iterator”).callLimit(“next”,7)

Redundant operation an AbstractProcessor instance cannot call init
twice

instanceOf(“AbstractProcessor”).callLimit(“init”,1)

Domain mode an ImageWriteParam instance can only call
setCompressionType when the instance is in explicit
compression mode

instanceOf(“ImageWriteParam”).firstMustOccurBeforeSecond(
“setCompressionMode(MODE EXPLICIT)”,
“setCompressionType”)

TABLE II: API specifications for the examples of the different Beckman taxonomy categories.

Directive # of apps Percentage (%) # with Error % of
violation check applies of total error apps that apply

GetActivity 950 53.9 458 48.2

OptionsMenu 194 10.5 44 22.7

SetArguments 605 32.6 3 0.5

Inflate 435 23.4 13 3.0

FindViewById 368 19.8 0 0.0

GetResources 21 1.1 7 33.3

SetInitialSavedState 60 3.2 0 0.0

SetTheme 368 19.8 0 0.0

SetPackageSetSelector 554 29.8 0 0.0

At least one directive applies 1572 84.7 - -

TABLE III: Applications in the F-Droid dataset where directive checks apply, as well as applications where checks signaled possible errors.
The second and third columns show count and percentage of applications in the dataset that applied to each directive violation specification.
At least one directive applies means the number of applications where at least one directive could apply to the application — applications
contain the method call mentioned in the directive. The fourth and fifth columns show the number of violations detected in the F-Droid
dataset and the percentage of detected errors out of the number of applications where the check applies.

undefined because a successful repair would require adding
a new method to the application, which is not currently
supported by the repair approach. The GetResources and Se-
tArguments encounter similar problems. While the methods
could just be deleted to pass the check, often the application
needs an alternative way to pass the data that the user intended
with these calls, which requires adding significant code to
fix. Addressing these problems are possible interesting areas
of future work, particularly trying to guide repairs from the
functionality of the failing method call.

D. Error detection and repair on F-Droid
With the goal of evaluating how well FrameFix applies

to a diverse set of applications, we ran the checkers on
the applications in the F-Droid dataset. We found that 138
applications in the dataset produced call graph errors in Soot
and were unable to be evaluated by the analysis. We then found
that 65 of the applications produced other errors, often an
analysis failure due to the application’s language — the current
implementation of FrameFix assumes that the application is
written in Java, while some Android applications in the dataset
were written in Kotlin. After removing the applications with

Application Directive Violated Repaired? Repair Type

DeltaCamera GetActivity Yes Move Method

PSLab GetActivity Yes Move Method

RXDroid OptionsMenu (tests fail) GitHub

RXDroid Inflate (tests fail) GitHub

TABLE IV: Repairs on F-Droid applications with detected prob-
lems.

errors from the evaluation, we ran the checkers over the
remaining 1,761 applications in the dataset.

We found that only five checkers found errors in the
applications. The errors counts detected by the five checkers
are shown in Table III. The high number of GetActivity
errors is due to a heuristic context check that throws an error
if GetActivity is used in any context that cannot easily be
determined to be correct.

Unfortunately, our initial tests were not able to repair many
of the detected errors at this time. The main problem is that
it is difficult to build most of the applications, due to depen-
dencies not being found. Some of the other repair cases are



# #
Directive Violated Repair Type Inj. Repaired

SetPackageSetSelector Reorder Methods 4 4

SetContentView Reorder Methods 22 22

SetTheme Reorder Methods 19 19

SetInitialSavedState Move Method 3 3

GetActivity Move Method 4 1

Inflate GitHub 3 1

OptionsMenu GitHub 1 1

TABLE V: The number of injected (inj.) F-Droid applications with
violations, and the number repaired.

situations that cannot be currently repaired — GetResources
and SetArguments.

The successful repair cases are shown in Table IV. RX-
Droid’s test cases fail before and after the repair because the
test code uses a version of Closure that is incompatible with
more recent Java versions.

E. Repair of injected errors

To further evaluate FrameFix, we wanted to test the repair
techniques in FrameFix on other directives that were not
covered in the error dataset. To simulate repairing applications
with problems, we created a script to inject the problem
mentioned in the directive into a random but valid spot for
violating the directive — if the problem could be injected into
multiple spots in the application, a spot was chosen at random.

Next, we collected a set of application repositories where
we could inject the problem in the source code. We collected
these repositories from the open source applications in F-Droid
that had a publicly accessible repository posted in the F-Droid
metadata folder. 1,657 repositories met this requirement.

The list of available repositories was reduced down to the
repositories in the dataset that were written in Java. The
injection technique also needs to be able to build APKs,
since the static analysis only worked on compiled Android
executables. We only included applications that contained a
set of test cases and passed the test cases without problems.
Thus, we used the standard process to build a debug APK and
run the test cases for the build (the Gradle assembleDebug
and test commands). Of the 1,657 repositories tested, 115
applications met these criteria without errors.

Using those 115 application repositories, we checked which
repositories used code that applied to the seven directive vio-
lation types that we are able to fix with the current FrameFix
approach. The number of applications that met these criteria
for each directive and the results of injecting repairs are shown
in Table V, showing that the repair technique is able to fix
most of the injected problems. FrameFix was not perfect when
repairing the GetActivity cases, due to the difficulty of finding
a valid method to call getActivity, and the Inflate cases due
to injecting the problem in a long method definition. This long
method definition caused the repair to generate a large number
of possible repairs, eventually timing out before successfully
repairing the application.

V. LIMITATIONS

There are some limitations to the current approach. The goal
of our specification language is to be sufficiently expressive
to support a study of automatic repair of directive violations.
It does not include all possibly useful features in specifying
all conceivable state-based directives. For example, we assume
the number of arguments to a method are fixed; it also does
not support explicitly stating alternative contexts created by
program branching in the specification, but program branching
can be checked in the underlying data flow analysis. To address
this, we support extending the language through the created-*
language terms. Our technique relies on a person knowledge-
able in the framework to be able to define a context that is
not overly broad or narrow for each specification. Another
limitation is that a framework expert may be required to
translate directives into specification language checks, because
natural-language directives are not always easily translated
into a precise definition. This limitation is mitigated because
multiple developers can use the same specifications, meaning
specifications only have to be written once.

While we designed FrameFix to apply to multiple frame-
works in multiple languages, we have not verified that Frame-
Fix applies to other frameworks or languages, due to the over-
head of incorporating FrameFix into another static analysis
tool. While we believe that the size of our dataset is enough
to demonstrate the feasibility of our claims that FrameFix
handles a wide range of cases, a larger dataset could reduce
the possibility of sampling error.

FrameFix’s repair approach is currently limited to small
change repairs. When a directive violation requires the addi-
tion of a new class or method to solve the problem, FrameFix
is unable to repair those cases. FrameFix is also not able to
fix problems due to environmental settings, such as the phone
application not working because the application requires a
permission that the user has not granted to the application.
The current FrameFix implementation is not designed to
address multi-threading issues, but it could be expanded to do
so. Finally, the Github repair technique has a computational
complexity issue when testing the differences between large
methods. This problem is not addressed in the current Frame-
Fix implementation and left as a possible future improvement

VI. RELATED WORK

A. Automated repair

Automated Program Repair is an area of research with the
goal to remove identified software failures without human
intervention. In automated repair, there are three main cate-
gories: heuristic repair, constraint-based repair, and learning-
based repair. Many repair techniques use a heuristic to generate
possible repairs. Notable examples in this category include
GenProg [19], [20], AE [21], RSRepair [22], SPR [23],
SapFix [24], and PAR [25]. FrameFix differs from these
approaches by the choice of heuristic changes used to generate
repairs, since FrameFix is based on framework insights.



Another major family is semantic-based repair techniques.
Examples of semantic-based repair techniques include An-
gelix [26], SemFix [27], DirectFix [28], Qlose [29], S3 [30],
the tools PHPQuickFix and PHPRepair [31], and Foot-
Patch [32]. Semantic-based program repair uses semantic
analysis, commonly symbolic execution, and a set of test
cases to infer desired program behavior. These techniques
calculate the repair based on the given constraints. While these
techniques have shown promise, most could only repair a small
set of state-based framework violations. One exception is the
synthesis-based approach Phoenix [33]. Although FrameFix
is similar to Phoenix, FrameFix differs from Phoenix in the
types of bugs that each repair technique fixes and the general
repair approach; Phoenix fixes errors caught by Findbugs [34]
using a programming-by-example approach to synthesize re-
pairs, while FrameFix avoids specifying an example for each
detected problem type (directive violation). ACS is another
related technique that extracts if conditions from GitHub,
limiting the reference code differently than FrameFix [35].

The final family is learning-based repair, which uses ma-
chine learning and past fixes to propose repairs. Examples
include Prophet [36] and DeepFix [37]. FrameFix does not
learn from past repairs, so it is not a learning-based repair.

B. Android and Framework Repair

One closely related work is Droix, which repairs crashing
Android applications using manually created patterns [13].
While the repair patterns in Droix served as a source of
inspiration for the repairs in FrameFix, Droix differs from
FrameFix in that repairs were manually validated, and that
Droix repairs Android byte code. FrameFix, instead, produces
repairs at the source code, which is easier for developers to
save into their project’s source code repository. Other recent
work on the Android framework has categorized Android
exceptions and extracted common repair patterns [38]. Some
of these repair patterns are useful for FrameFix.

Another approach to framework repair is to use contracts
and dynamically created object behavior models to guide
repairs [14], [39]. This approach requires a significant de-
veloper investment to work for most frameworks, since both
the framework and application would need to be written in
a language that supports contracts. FrameFix instead only
requires specifying the directive to check and how to translate
the directive into code if a custom check is required. Another
tool, SemDiff, uses versioning to fix out-of-date API calls [40].
Other approaches check [41] or detect anomalies [42] in
runtime behavior. One study used MuBench to compare tools
that statically analyzed programs for infrequent API usage
patterns to identify API misuse [43]. These tools addresses
a different subclass of API problems than FrameFix, rely
on infrequent patterns to identify misuse, or require multiple
application runs to generate a fix.

Past researchers have modeled the Android callback system
for static analysis. One study evaluated how the changes
between different versions of Android can be used to detect
method ordering bugs in callbacks [44]. Another automatically

generated interprocedural call graphs from callbacks in an
application [45]. An investigation into popular Android static
analysis research tools found that incorrect modeling of the
Android callback sequence can lead to unsound analysis
results [46]. Pasket [47] and SynthesiSE [48] are related tech-
niques that synthesize a representation of the framework for
symbolic execution analysis. Instead of focusing on accurate
modeling of Android callbacks, our work uses the similarities
between callbacks in different applications for repair.

C. Directives

Prior work has proposed three different directive classifi-
cation schemes. One classification scheme was based on the
abnormal aspect specified in the directive (e.g., the calling re-
strictions, method limitations, or side-effects) [8] while another
focused on the segment of code covered by the directive (e.g.,
line, method, or object) [49]. The third classification scheme
is based on the keywords in the directive (e.g., directives with
the word ’error’ or ‘illegal’ are grouped into the same cate-
gory) [50]. Another study on directives found that developers
were more likely to successfully debug applications with direc-
tive violations when developers were presented the directives
important to the problem’s context [51]. Other researchers
have investigated certain directive categories: directives speci-
fying how to extend objects to implement the framework [52]
and parameter usage constraints [53]. FrameFix, instead, uses
directives as a way to identify framework state constraints.

VII. CONCLUSION

We have demonstrated that we can use the insight that
frameworks heavily use object protocols and inversion of con-
trol to guide the repair of state-based framework application
problems. We demonstrated this through our implementation
of FrameFix, which was able to repair both detected bugs and
bugs injected into real applications. Possible expansions on
this work include automatically inferring part or all of the
checker specifications and addressing other types of frame-
work application issues.
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