
SASS: Self-adaptation using stochastic search
Zack Coker, David Garlan, Claire Le Goues

School of Computer Science
Carnegie Mellon University, Pittsburgh, PA 15213

Email: {zfc,dgarlan,clegoues}@cs.cmu.edu

Abstract—Future-generation self-adaptive systems will need
to be able to optimize for multiple interrelated, difficult-to-
measure, and evolving quality properties. To navigate this com-
plex search space, current self-adaptive planning techniques
need to be improved. In this position paper, we argue that the
research community should more directly pursue the application
of stochastic search techniques—search techniques, such as hill
climbing or genetic algorithms, that incorporate an element of
randomness—to self-adaptive systems research. These techniques
are well-suited to handling multi-dimensional search spaces and
complex problems, situations which arise often for self-adaptive
systems. We believe that recent advances in both fields make this
a particularly promising research trajectory. We demonstrate
one way to apply some of these advances in a search-based
planning prototype technique to illustrate both the feasibility and
the potential of the proposed research. This strategy informs
a number of potentially interesting research directions and
problems. In the long term, this general technique could enable
sophisticated plan generation techniques that improve domain
specific knowledge, decrease human effort, and increase the
application of self-adaptive systems.

I. INTRODUCTION

True software self-adaptation requires the efficient traversal
of an expansive and multi-dimensional problem space. Future-
generation systems will need to be able to optimize for
multiple, interacting, difficult-to-measure, and evolving self-*
properties and priorities. While promising, existing solutions
tend to consider only one or two properties at a time, assume
property independence, fail to consider properties with evolv-
ing priorities, or more generally are insufficiently complex to
meet the needs of the next generation of self-adaptive software
systems. We need more sophisticated solutions to profitably
navigate this complex, multi-objective search space.

We believe that a promising research avenue towards such
sophisticated solutions lies in stochastic search-based soft-
ware engineering techniques. Stochastic search techniques are
search mechanisms that incorporate an element of random-
ness; well-known examples include hill climbing and genetic
algorithms. Search-based software engineering applies such
approaches to a diversity of problems in software engineer-
ing [1]. Although there exists promising interest in this area
(e.g., [2]–[4]), including a keynote on the subject at SEAMS
2014 [5], and a recently-instated SBSE-SS (for Self-search)
track at GECCO [6], there is strikingly little previous work in
directly applying such techniques to software self-adaptation,
or to software architecture design or evolution in general.

In this position paper, we argue that the time is right to ad-
dress this research oversight. We believe that applying search

based software engineering strategies to problems in multi-
and evolving-objective self-adaptive software systems is both
promising and possible. We believe that it is promising because
stochastic search-based techniques are particularly well-suited
to addressing problems of this form, and because we believe
that the combination of these types of techniques will provide
unique insights about how to design and implement self-* sys-
tems. We believe it is possible because of recent advances that
admit the efficient, automatic representation and evaluation of
key problems in self-adaptive systems. We substantiate these
claims with a proof-of-concept prototype search-based planner,
applied to the well-known Znn.com example. This proof of
concept demonstrates one way that stochastic techniques can
be applied to contingency planning for nondeterministic sys-
tem behavior, plan improvement, changing utility conditions,
multiple interdependent utility conditions, and plans involving
complex actions that take time and may fail.

Although we focus primarily on the planning aspect of the
self-adaptation loop for the purposes of a concrete discussion,
we believe that the space of potential research approaches
for SBSE to self-adaptation is quite broad. The design space
of self-* software systems inherently involves trade-offs in
multiple interrelated and evolving dimensions, including com-
plex notions of time, cost, and non-determinism. We therefore
believe that this initial set of ideas holds promise at multiple
levels in the space of self-* software systems research.

The rest of this paper proceeds as follows. We begin
with motivation, focusing on what is missing from existing
knowledge on self-adaptive systems that prevents their full
realization as well as the features of the problem space
that lend it particularly well to stochastic, SBSE-inspired
search techniques (Section II). We then provide background
on stochastic search and search-based software engineering to
substantiate our claims that the approaches are particularly
promising in this space (Section III). We use a prototype
search-based planner to illustrate potentially interesting direc-
tions in this research area in Section IV. We discuss potential
directions for the proposed research program in Section V,
and then conclude (Section VI).

II. THE SEARCH SPACE OF SELF-* SYSTEMS

The ideal self-adaptive system is general and flexible,
able to optimize for multiple and difficult-to-measure quality
properties and respond to changing priorities and evolving
constraints. Unfortunately, despite high-level research success
in generally characterizing the problem space (including the

MAPE-loop conception of self-* software systems [7] as well
as more recent treatments [8]), repeated surveys of the field
have found that most existing techniques commonly address
only one or two static or independent properties [9], [10].

This approach is inadequate for the next generation of self-
adaptive systems. Consider the planning component of the
MAPE loop. The ideal self-adaptive planner must be able
to adjust to a wide variety of situations. It must be able
to adjust from single systems with thousands of configu-
rations, where deterministically searching the configuration
search space becomes infeasible [11], to Ultra Large Scale
systems, where multiple systems are distributed with complex
interactions and different goals [12]. Planners also need to
be able to adjust to specific run-time contexts, reconfigu-
rations, new adaptation, and changing system policies [13].
Of course, many planning advances in autonomous systems
have been successfully adapted to software [3], [14], [15].
However, while there have been investigations into, for exam-
ple, goal-oriented plans for self-adaptive systems [16], [17],
the complexity of software and environmental interactions
have typically prevented previous techniques from applying
to many situations [18]. Even adaptable plans [11] are largely
unable to adapt beyond specific situations, and are better suited
for failure recovery, as compared to optimizing a quality at
run-time [19]. Run-time feedback decision-making may help
improve system reliability [13], but existing work still tends to
only provide guarantees for restricted forms of system goals,
or only in specific systems (e.g., [20]), rather than across the
full span of possible self-* properties.

These complexities extend beyond those inherent to the
existence of multiple quality attributes of interest. Interac-
tions between competing objectives need to be investigated
further [10], and objective priorities may change over a sys-
tem’s lifetime. Beyond this, self-adaptation actions take time,
and can fail. Previous research has proposed the automatic
workarounds approach [21], [22], which consists of using
redundant or similar features to bypass problematic application
features. As self-adaptive systems become more complex, mul-
tiple different adaptation sequences can be taken to produce
similar results for some measurable quality. However, the
interactions between failure handling actions and other quality
attributes of interest (adaptation sequence cost, for example)
can be non-trivial. While these sequences are similar for one
quality, they may have vastly different and unknown effects
on the whole system of qualities that a designer cares about.

III. STOCHASTIC SEARCH AND SBSE

Stochastic search techniques use randomness to avoid some
of the limitations and biases of deterministic heuristics. In-
stead, stochastic techniques only need to be able to evaluate a
given solution, and reduce the space by efficiently directing the
search toward the higher scoring solutions using well-chosen
representation and operators.

In this paper, we argue that the research community should
strive to fully adapt stochastic search methods from search-
based software engineering (SBSE) to the problem of software

self-adaptation. Search-based software engineering applies
stochastic search methods to a diversity of problems in soft-
ware engineering [1], including testing [23]–[25], development
process and effort estimation [26], and program evolution and
repair [27], [28]. Although there has been previous success and
interest in applying such methods to self-* software systems
and architectural design or evolution more generally (e.g., [2],
[3]), the amount of previous work in this space is remarkably
low. Harman’s recent comprehensive survey [29], for exam-
ple, does not include self-adaptive software in its taxonomy
of the SBSE field. However, the survey does note several
“overlooked and emerging areas” of direct interest, including
on-line optimization, SBSE for non-functional properties, and
multi-objective optimization.

At a high level, a stochastic search technique traverses a
space of candidate solutions to a problem, which are encoded
in an underlying representation. Each candidate is assigned a
score based on how close it is to the desired solution, using an
objective or fitness function. Typically, solutions that are closer
to the goal (have higher fitness) are more likely to be retained
to contribute to the search in future iterations. New candidates
are created by applying domain-specific operators to previous
solutions. Critically, by definition, this process includes an
element of randomness, such as in choosing which operators to
apply or which candidates to retain. Examples of well-known
stochastic search methods in SBSE include hill climbing and
genetic algorithms [30].

We believe that these techniques are particularly promising
for self-adaptive software systems, for several reasons. Recent
work demonstrated the potential of SBSE techniques to solve
problems at real-world scale, such as bug repair in large, extant
software systems [27], [28]. This has resulted in a body of
knowledge on how to scalably manipulate tree-based program
constructs in terms of both representation and operator encod-
ings (such as representing candidate program improvements as
sets of changes rather than entire solutions [31]). Stochastic
techniques have also recently been shown to successfully
apply past knowledge to new situations [32], [33], suggesting
promise in helping long-running systems evolve in response
to new quality objectives or priorities. Stochastic search-
based techniques have been useful in developing unusual or
unexpected solutions to difficult problems. The results of such
techniques may therefore be informative for researchers trying
to understand the design space of self-adaptive systems.

Finally, although predicting and measuring hard-to-quantify
quality attributes is an open problem, recent advances in
probabilistic model checking (see, e.g., PRISM [34]) allows us
to quantify expected costs and benefits in a given self-adaptive
system or associated modification plan. This is important
because it suggests a way to evaluate candidate solutions in
unsupervised search. Such tools are especially interesting in
this domain because they provide continuous (probabilistic)
measures of the quality of a candidate solution. Multi-objective
search problems remain challenging, but we believe such tools
provide a promising avenue to evaluating candidate fitness,
which we demonstrate with our prototype tool, discussed next.

Cost Resp. Failure
Basic Action Precondition ($) Time Time Rate

Add S1 Server S1 < Smax
1 15 -5 600 0.1

Add S2 Server S2 < Smax
2 20 -5 600 0.1

Remove S1 Server S1 > 1 -15 5 600 0.1
Remove S2 Server S2 > 1 -20 5 600 0.1
Add DBA Thread TA < Tmax

A 0 -2 180 0.2
Add 2 DBB Threads TB < Tmax

B -1 0 -1 180 0.2
Increase Quality Quality set low 0 -2S 1 0.3
Decrease Quality Quality set high 0 2S 60 0.3

TABLE I
BASIC ACTIONS: S1 and S2 refer to the server pools at locations 1 and 2

respective; S is the total number of active servers. TA and TB refers to the
number of threads associated with databases A and B, respectively; Tmax

N
is the maximum permitted number of threads in each database, which we set
to 5 in our our simulations. Each action is associated with a precondition,

which governs whether it may be applied; an adaptation cost (which is
incurred whether the system succeeds or not); and an effect on system

response time. Each action takes some amount of Time to apply (regardless
of success or failure), and may fail, with a probability shown in Failure Rate.

IV. PROOF OF CONCEPT

In this section, we describe a prototype that uses genetic
programming (GP) to perform automated, self-adaptive plan-
ning in a system with multiple competing, time sensitive,
probabilistic quality objectives. GP is the application of ge-
netic algorithms (GA) to search problems involving tree-based
solutions (typically programs); a GA is a population-based,
iterative stochastic search method inspired by biological evolu-
tion [30].1 GP uses computational analogues of biological mu-
tation and crossover to generate new candidate solutions, and
evaluates solutions using a domain-specific objective, or fitness
function. Potential solutions that have a high fitness score are
more likely to be randomly retained into future iterations, both
alone, modified slightly (via mutation), or in combination with
other potentially partial solutions. We demonstrate the use of
a probabilistic model checker as a fitness function, enabling
the exploration of a complex multi-dimensional search space
with evolving, conflicting, and interacting quality objectives.
The current version of the planner creates plans offline (not
in real-time) in attempt to better understand optimal plans for
complex situations. Later version of the planner may handle
real time contexts.

We begin by introducing the case study system (Sec-
tion IV-A) and outlining our approach and its implementation
(Section IV-B). We then investigate three candidate planning
scenarios.

A. Znn.com

Znn.com is a scenario self-adaptive architecture for a
news website [35] commonly used in adaptive systems re-
search [36], [37]. The system consists of a three-tiered archi-
tecture: databases store content which servers present to client-
facing machines. Znn.com has three main quality aspects—
response time, operating cost, and content resolution—and can

1We use the terms genetic programming/genetic algorithms and GP/GA
interchangeably for the purposes of this discussion.

G ::= basicAction
| if (G) succeeds then (G) else (G)
| G ; G

Fig. 1. Compound actions consist of either basic actions or control actions.
ifSuccessElse allows plan branching. If the first action executes success-
fully, the plan executes the basic action associated with the success branch;
otherwise, it executes the action on the failure branch. Seq (indicated via the
semicolon in example plans), indicates two actions to be executed in sequence.
The second action is always attempted regardless of the outcome of the first.

Fig. 2. Example plan: This plan states that the system should first try to
add a server at location 1. If that adaptation is successful, the system should
increase the thread count for database A. If adding a server at location 1
fails, then the system should reduce the resolution of the system. This plan
is feasible from the current initial configuration.

modify its underlying configuration in response to changing
environmental conditions.

For the purposes of this example, we select the following
initial settings for the system:

• Operating cost is 30; response time is 20s.
• There are two server locations (S1 and S2), both initial-

ized with two servers. Each must host a minimum of one
server and a maximum of four.

• There are two databases, DBA and DBB both of which
start in single-threaded mode and can increase to a
maximum of five threads. Thread count cannot be decre-
mented.

• Data is initially transmitted at high fidelity/resolution; we
assume for simplicity that data fidelity is consistent across
all servers.

The basic adaptation actions available for this system, with
pre- and post-conditions, are listed in Table I. If an adaptation
fails, the failure penalty is added to the plan execution time
(“Time”, in the table), and the rest of the system remains
the same. The adaptation effects are selected to represent a
hypothetical situation, but could correspond to data collected
from a real deployment in future investigations.

In planning to adapt this system, then, there are four
potential quality attributes of interest: system cost, system
response time, content fidelity, and adaptation time (the time
taken to execute the plan itself).

B. Genetic Algorithm Planning for Znn.com

We built a planner using the Java Genetic Algorithm
Package (JGAP) [38], a framework that provides genetic
programming capabilities. Candidate solutions are represented
as trees following the grammar shown in Figure 1. The

basicActions are listed in Table I. This grammar is a
simplified form of existing strategy specification languages,
such as Stitch [39]. Those basic actions may be composed via
two control actions, listed in Figure 1, which allow for both
control flow and sequencing. Figure 2 shows a simple example
plan.

We use PRISM [34], a probabilistic model checker, to
evaluate candidate fitness. We performed 100,000 PRISM
simulations for each candidate plan, and computed the fitness
of each run according to an experiment-specific metric (as-
signing varying weights to different quality attributes). The
plan’s fitness is the average of the 100,000 scores. Infeasible
plans, such as a plan that attempts to add too many servers
to a location, and plans exceeding a fixed branch depth of
20, receive a fitness score of 0. The branch depth limit
serves to control code bloat, a known concern in genetic
algorithms [40]. Generating infeasible plans does not cause
significant overhead for the system, which is dominated by
fitness function execution (infeasibility checking, by contrast,
is a quick operation).

A genetic algorithm iterates over populations of individual
candidate solutions, which are randomly modified and recom-
bined using mutation and crossover operators. The individu-
als in the initial population may be generated randomly or
seeded from a starting plan; we take the latter approach in
our investigations. In this prototype, only basic actions may
be mutated, and they may be replaced by any other basic
action from Table I. Crossover creates new candidate plans by
combining partial solutions from two other candidate plans,
and may be applied at any point along two trees (including
at control actions). We defer to the underlying JGAP engine
to set reasonable parameters for values such as mutation
and crossover rates, selection tournament size, etc; we leave
investigation of tuning such parameters for future work.

C. Improving an inadequate plan.

Using the approach just outlined, we first investigate
whether the stochastic search-based planner can, in fact, im-
prove a low-quality plan by optimizing for a multi-parameter
fitness metric. We provided a fitness metric that strongly
weights response time, with equal weight given to cost, content
quality, and plan execution time. Figure 3 shows a low-quality
starting plan, with a correspondingly low fitness according to
our metric.

Figure 4 shows a simplified version of one result from the
planner (note that population-based algorithms may generate
many acceptable candidate solutions). This plan attempts to
reduce text resolution, add a server at each location, and then
increase the database B threads. This sequence of adaptations
is very sensible in light of the provided metric, which strongly
prefers a minimal response time. Indeed, the initial sequence
achieves the maximum reduction in response time (from 20
to 1). The interesting complexity emerges from the use of
non-deterministically successful actions and a probabilistic
model checker, which led the search to include multiple failure
handling branches: if the initial sequence fails at virtually any

Fig. 3. Starting Plan: The plan removes a server from location 2. If successful,
the plan increases the thread count for database A, otherwise it adds a server
at location 1. If either of these two actions succeed, the plan tries to increase
the threads at database B twice. If either of these two actions fail, the plan
tries to remove a server from location 1. If the server is successfully removed
from location 1, the system tries to increase the database B threads; otherwise,
the plan tries to increase threads in database A.

Fig. 4. Reduce Response Time Plan: The genetic program found that the
best sequence of adaptations was to decrease article quality, add a server at
location 1, add a server at location 2, and then add 2 database B threads . The
planner also prioritized which adaptations in the sequence should be repeated
if an action fails, since the plan size was limited.

Fig. 5. Reduce Cost and Response Time Plan: This was the best plan found
by the planner to reduce cost and response time. The generated plan did not
adjust for possible failures, even though failures were possible.

Fig. 6. Plan Generated From a Plan With a Different Metric: Starting with a
plan that reduced cost and response time, the plan was altered to only reduced
response time. The final plan which reduced response time is shown above.
The planner found the best sequence of adaptations was to add a thread to
database A, add a server at location 2, decrease article quality, and then add
a thread to database A. The planner also prioritized which adaptations were
to be repeated if an adaptation failed in the limited plan size.

point, the plan attempts to restart the action (with some minor
order variation). Its efforts to do so are limited to 5 repetitions
by the branch count limitation in the genetic algorithm.

D. Generating plans for multi-objective metrics

The metric used in the first experiment is not truly multi-
objective: It strongly prefers one of the four quality dimensions
over the others. In our second investigation, we provided a
metric that weights cost and response time equally, preferring
them strongly over the other two factors. The starting seed
plan remains the same.

Figure 5 shows a plan that resulted using this metric. Note
that unlike the plan generated when optimizing for response
time alone, this plan is sequential, and these results were
consistent across a variety of our experimental runs. This
plan does reduce response time through its first 5 actions,
before reducing cost by removing servers. However, unlike
the previous plan, it does not add any servers, which greatly
increases cost. This sequence ordering respects the linear effect
that removing servers (which decreases cost but increases
response time) has on the response time savings produced by
the quality degradation: if the servers were removed first, the
savings would decrease.

Additionally, this plan does not attempt to account for failed
actions through the use of multiple conditional actions. This
possibly constitutes interesting emergent behavior: multiple
candidate plans strongly favoring response time alone included
branching, while plans that equally emphasized two attributes
consistently create sequential plans.

E. Planning for evolving quality priorities

Priorities may change over a system’s life-cycle, and thus
plans may need to change as well. In our final investigation,
we started with the plan in Figure 5 (recall that this plan was
generated via a metric that favored reduced cost and response
time equally) and provided a metric that favored response
time a bit more strongly than the other attributes. Figure 6

shows a simplification of the result. This plan is similar to
what the planner produces for the same metric from the low
quality starting plan (results not shown), and is similar (but not
identical) to the plan produced for the metric that very strongly
favors response time (above). Like that plan, this plan consists
of a sequence of actions that maximally reduce response,
with repeated reattempts in case of failure. Unlike the plans
generated from the inadequate starting plan, this one starts
with an increase in DBA threads. Because of the way crossover
and mutation is applied, this action is almost certainly retained
unmodified from the initial plan that optimized for cost. This
action has a positive impact on response time and no impact
on cost, and thus the search is not incentivized to replace
it. This example is a clear demonstration that the individual
actions are composable with respect to the objective function,
substantiating our claim that the shape of the problem is a good
match with the assumptions behind this (and many) stochastic
search techniques.

V. RESEARCH IMPLICATIONS

Our initial investigations serve as a proof-of-concept of
the promise of combining of advances in probabilistic model
checking and stochastic search-based software engineering
techniques to fully explore the quality and configuration trade-
offs in one aspect of self-adaptive system design and imple-
mentation. This proof of concept raises interesting questions,
with suggestions for both immediate future work and a longer-
term research agenda combining these two fields.
Plan modeling. These results have possible implications for
both plan behavior modeling and expressiveness. For exam-
ple, when optimizing for system response time, our search-
based planner aggressively accounted for failures via repeated
branching sequences of adaptation actions. This is consistent
with the way failures were modeled in the system: as indepen-
dent actions which always had the same chance of succeeding.
By performing the action multiple times, the action was likely
to eventually succeed. However, action failure is not always
independent. If adding a server to location 1 fails the first time,
the next attempt to add a server at that location may be more
likely to fail, or may always fail until the issue is resolved.
Thus, more realistic results may be obtained by increasing the
failure rate if the action previously failed, and accounting for
these modifications in the model itself.

The planner could also be adjusted to provide alternate
recovery options when an action fails and then allow the
execution engine to decide if redoing the action is likely to
fail. These results also support the value of including looping
constructs in plan generation (such as is available in PDDL),
and accounting for such loops in the model.
Unexpected interactions. One drawback to stochastic search-
based techniques is that it can be difficult to explain the
progression to a final result. On the other hand, their results
can sometimes be interestingly unexpected. For example, as
expected in a multi-objective search, our prototype generated
different plans to achieve different goals. The differences in
the results produced by the cost- and response time-focused

metrics are interesting because they demonstrate by example
certain interactions between the two metrics as they relate to
system planning and modification. While the differences be-
tween the plans was expected because of their different goals,
the difference in the number of branches was unexpected. By
studying such results, we can gain insight into previously
unexamined interactions and features of the systems and
search spaces in question. Stochastic search-based techniques
can be used to quickly generate a wide diversity of different
plans, configurations, or systems architectures with a variety of
different quality attributes, and by examining large numbers of
examples optimized to different outcomes, interesting features
of property interactions (for example) may emerge that are
difficult for humans to derive from first principles, even for
small systems.
Stochastic search implications. Different stochastic tech-
niques will likely be useful in different situations. Other
research areas (such as computational biology) have explored
the specific use cases that are appropriate for particular
stochastic techniques in their domain. Truly multi-objective
search techniques (such as NGSA-II or island-based GP) may
be particularly beneficial in a search problem with multiple
quality objectives. More work may be necessary to understand
the implications (and the best ways to deploy) probabilistic
fitness functions.

To understand how stochastic techniques can be applied, it
would also be helpful to know how the techniques perform
under different conditions. Past results have implied that
certain techniques may be better for planning compared to
optimizing [15]. However, a recent study successfully used
genetic algorithms to adapting mobile application configura-
tion [3], in a reasonable amount of time. The study mentions
that the low ratio of feasible plans to possible adaptation
combinations may greatly influence algorithm speed. Future
studies could investigate how much this ratio, or other factors
such as the clustering of feasible plans, affects the application
of stochastic techniques to self-adaptive systems.
Leveraging diverse populations. Stochastic search techniques
have shown promise for creating artificial diversity, potentially
reviving the research promise of N-variant systems [41].
Diverse populations optimized for the same quality attributes
(but with different configurations!) may suggest mechanisms
for creating more robust systems by varying the attack or
failure surface. Many population-based stochastic techniques,
such as genetic programming, can be used to increase the
fitness of populations of plans over time, suggesting techniques
for easing reconfiguration of large sets of systems in response
to new adaptations or large-scale modifications.
Interactions between MAPE components. There is still
much to learn about how the different sections of the MAPE
loop interact. One possibility is plans which take into ac-
count feedback from the monitor (similar to what is done in
Stitch [39]). The generated plan may try an adaptation for a
specific period of time and if the adaptation is not working
as expected, the system will revert back to the original state
to try something else. Only further investigation into these

areas will allow us to fully take advantage of these beneficial
interactions.
Human trust. One current problem with self-adaptive system
plans is that system maintainers do not always trust generated
solutions [42]. If a system begins to perform an unexpected set
of actions, which may be more likely with stochastic planning
techniques, a system’s maintainer could easily misdiagnose a
better plan as the system misbehaving. Future research needs
to investigate how stochastic planners can convince human
maintainers of the correct course of action when necessary. If
guarantees can be provided by a planner, those guarantees can
also be used to confirm the system is not misbehaving. Future
research should investigate how to effectively communicate the
rational behind automatically-generated self-adaptive system
plans.

VI. CONCLUSION

The promise of software self-adaptation is the ability to
deploy complex and versatile systems that can dynamically
respond to changing conditions and goals. This can only
be achieved by understanding how to accurately respond to
changing conditions. Stochastic techniques, previously lightly
explored when applied to self-adaptive systems, provide a way
to greatly increase our knowledge in this area, while also
providing greater flexibility in how to design and implement
system changes. Both fields have advanced sufficiently to
make this a particularly promising time to explore their inter-
section: SBSE techniques can be applied to large systems with
similar problem domains, and modeling techniques can help
predict and quantify self-* system behavior. We believe that
multiple benefits can be gained by investigating how stochas-
tic techniques apply to self-adaptive systems, including how
quality attributes and adaptations interact and how systems can
adapt to more diverse situations. As we further our knowledge
of how to apply stochastic techniques to self-adaptive systems,
we will help make wide-spread use of self-adaptive systems a
reality.

ACKNOWLEDGEMENT

This work is supported in part by awards N000141310401
and N000141310171 from the Office of Naval Research, the
National Security Agency, and the U.S. Department of Defense
through the Office of the Assistant Secretary of Defense
for Research and Engineering (ASD(R&E)) under Contract
HQ0034-13-D-0004. The Systems Engineering Research Cen-
ter (SERC) is a federally funded University Affiliated Research
Center managed by Stevens Institute of Technology. Any
views, opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not
necessarily reflect the views of the Office of Naval Research,
the National Security Agency, United States Department of
Defense, or ASD(R&E).

REFERENCES

[1] M. Harman, “The current state and future of search based software
engineering,” in International Conference on Software Engineering,
2007, pp. 342–357.

[2] B. H. C. Cheng, A. J. Ramirez, and P. K. McKinley, “Harnessing
evolutionary computation to enable dynamically adaptive systems to
manage uncertainty,” in Workshop on Combining Modelling and Search-
Based Software Engineering (CMSBSE), May 2013.

[3] G. G. Pascual, M. Pinto, and L. Fuentes, “Run-time adaptation of
mobile applications using genetic algorithms,” in Proceedings of the
8th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, ser. SEAMS ’13, 2013, pp. 73–82.

[4] P. Zoghi, M. Shtern, and M. Litoiu, “Designing search based
adaptive systems: A quantitative approach,” in International Symposium
on Software Engineering for Adaptive and Self-Managing Systems,
ser. SEAMS 2014, 2014, pp. 7–16. [Online]. Available: http:
//doi.acm.org/10.1145/2593929.2593935

[5] M. Harman, Y. Jia, W. B. Langdon, J. Petke, I. H. Moghadam, S. Yoo,
and F. Wu, “Genetic improvement for adaptive software engineering
(keynote),” in Proceedings of the 9th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems, ser.
SEAMS 2014, 2014, pp. 1–4.

[6] GECCO ’14: Proceedings of the 2014 Conference on Genetic and
Evolutionary Computation. ACM, 2014.

[7] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[8] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,
H. Müller, M. Pezzè, and M. Shaw, “Software engineering for self-
adaptive systems,” B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, and
J. Magee, Eds. Springer-Verlag, 2009, ch. Engineering Self-Adaptive
Systems Through Feedback Loops, pp. 48–70. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-02161-9 3

[9] M. Salehie and L. Tahvildari, “Autonomic computing: Emerging trends
and open problems,” in Proceedings of the 2005 Workshop on Design
and Evolution of Autonomic Application Software, ser. DEAS ’05, 2005,
pp. 1–7.

[10] ——, “Self-adaptive software: Landscape and research challenges,”
ACM Trans. Auton. Adapt. Syst., vol. 4, no. 2, pp. 14:1–14:42, May
2009.

[11] E. Gjorven, F. Eliassen, and J. Aagedal, “Quality of adaptation,” in In-
ternational Conference on Autonomic and Autonomous Systems (ICAS),
July 2006, pp. 9–9.

[12] L. Northrop, P. Feiler, R. P. Gabriel, J. Goodenough, R. Linger,
T. Longstaff, R. Kazman, M. Klein, D. Schmidt, K. Sullivan, and
K. Wallnau, “Ultra-Large-Scale Systems - The Software Challenge of the
Future,” Software Engineering Institute, Carnegie Mellon, Tech. Rep.,
June 2006.

[13] F. D. Macı́as-Escrivá, R. Haber, R. del Toro, and V. H. Dı́az, “Self-
adaptive systems: A survey of current approaches, research challenges
and applications,” Expert Systems with Applications, vol. 40, no. 7267-
7279, 2013.

[14] N. Arshad, D. Heimbigner, and A. Wolf, “Deployment and dynamic
reconfiguration planning for distributed software systems,” in Tools
with Artificial Intelligence, 2003. Proceedings. 15th IEEE International
Conference on, Nov 2003, pp. 39–46.

[15] M. Salehie and L. Tahvildari, “Towards a goal-driven approach to action
selection in self-adaptive software,” Software: Practice and Experience,
vol. 42, no. 2, pp. 211–233, 2012.

[16] A. Lapouchnian, S. Liaskos, J. Mylopoulos, and Y. Yu, “Towards
requirements-driven autonomic systems design,” in Workshop on Design
and Evolution of Autonomic Application Software (DEAS), 2005, pp. 1–
7.

[17] M. Morandini, L. Penserini, and A. Perini, “Towards goal-oriented devel-
opment of self-adaptive systems,” in International Workshop on Software
Engineering for Adaptive and Self-managing Systems (SEAMS), 2008,
pp. 9–16.

[18] P. K. McKinley, S. M. Sadjadi, E. P. Kasten, and B. H. C. Cheng,
“Composing adaptive software,” Computer, vol. 37, no. 7, pp. 56–64,
Jul. 2004.

[19] B. Srivastava and S. Kambhampati, “The case for automated planning in
autonomic computing,” Autonomic Computing, International Conference
on, vol. 0, pp. 331–332, 2005.

[20] R. Laddaga, “Self adaptive software problems and projects,” in IEEE
Workshop on Software Evolvability, 2006, pp. 3–10.

[21] A. Carzaniga, A. Gorla, and M. Pezzè, “Self-healing by means of auto-
matic workarounds,” in International Workshop on Software Engineering
for Adaptive and Self-managing Systems (SEAMS), 2008, pp. 17–24.

[22] A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè, “Automatic
workarounds for web applications,” in International Symposium on
Foundations of Software Engineering (FSE), 2010, pp. 237–246.

[23] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer, and R. S. Roos,
“Time-aware test suite prioritization,” in Proceedings of the International
Symposium on Software Testing and Analysis, Portland, ME, USA, 2006,
pp. 1–12.

[24] C. C. Michael, G. McGraw, and M. A. Schatz, “Generating software test
data by evolution,” IEEE Transactions on Software Engineering, vol. 27,
no. 12, pp. 1085–1110, December 2001.

[25] S. Wappler and J. Wegener, “Evolutionary unit testing of object-oriented
software using strongly-typed genetic programming,” in Genetic and
Evolutionary Computation Conference, 2006, pp. 1925–1932.

[26] A. Barreto, M. Barros, and C. Werner, “Staffing a software project: a
constraint satisfaction approach,” Computers and Operations Research,
vol. 35, no. 10, pp. 3073–3089, 2008.

[27] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer, “GenProg: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, pp. 54–72, 2012.

[28] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation
learned from human-written patches,” in Proceedings of the 35th Inter-
national Conference on Software Engineering, San Francisco, CA, USA,
2013, pp. 802–811.

[29] M. Harman, S. A. Mansouri, and Y. Zhang, “Search-based software
engineering: Trends, techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 11:1–11:61, Dec. 2012.

[30] J. R. Koza, “Genetic programming: On the programming of computers
by means of natural selection, 1992,” See http://miriad. Iip6. fr/microbes
Modeling Adaptive Multi-Agent Systems Inspired by Developmental
Biology, vol. 229, 1992.

[31] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in International Conference on Software Engineering, 2012, pp.
3–13.

[32] M. Harman, W. B. Langdon, and W. Weimer, “Genetic programming for
reverse engineering,” in Working Conference on Reverse Engineering.
IEEE, 2013, pp. 1–10, invited Keynote.

[33] J. Petke, M. Harman, W. B. Langdon, and W. Weimer, “Using genetic
improvement and code transplants to specialise a C++ program to
a problem class,” in European Conference on Genetic Programming.
Springer, 2014, pp. 137–149.

[34] M. Kwiatkowska, G. Norman, and D. Parker, “Prism 4.0: Verification of
probabilistic real-time systems,” in Proceedings of the 23rd International
Conference on Computer Aided Verification, ser. CAV’11, 2011, pp.
585–591.

[35] S.-W. Cheng, D. Garlan, and B. Schmerl, “Evaluating the effectiveness
of the rainbow self-adaptive system,” in ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), 2009,
pp. 132–141.

[36] J. Cámara, G. A. Moreno, and D. Garlan, “Stochastic game analysis
and latency awareness for proactive self-adaptation,” in International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), 2014, pp. 155–164.

[37] E. Yuan, S. Malek, B. Schmerl, D. Garlan, and J. Gennari, “Architecture-
based self-protecting software systems,” in Proceedings of the 9th Inter-
national ACM Sigsoft Conference on Quality of Software Architectures,
ser. QoSA ’13, 2013, pp. 33–42.

[38] “JGAP:java genetic algorithms package,” http://www.jgap.souceforge.
net, accessed: 2015-01-21.

[39] S.-W. Cheng and D. Garlan, “Stitch: A language for architecture-based
self-adaptation,” J. Syst. Softw., vol. 85, no. 12, pp. 2860–2875, Dec.
2012. [Online]. Available: http://dx.doi.org/10.1016/j.jss.2012.02.060

[40] S. Gustafson, A. Ekart, E. Burke, and G. Kendall, “Problem difficulty
and code growth in genetic programming,” Genetic Programming and
Evolvable Machines, pp. 271–290, 2004.

[41] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser, “N-variant systems: a secretless frame-
work for security through diversity,” in USENIX Security Symposium,
2006.

[42] J. A. McCann, R. De Lemos, M. Huebscher, O. F. Rana, and A. Wom-
bacher, “Can self-managed systems be trusted?: Some views and trends,”
Knowl. Eng. Rev., vol. 21, no. 3, pp. 239–248, Sep. 2006.

