
Augmenting Decompiler Output with Learned Variable Names and Types

Qibin Chen*, Jeremy Lacomis*, Edward J. Schwartz†,
Claire Le Goues*, Graham Neubig*, Bogdan Vasilescu*

*Carnegie Mellon University. {qibinc, jlacomis, clegoues, gneubig, bogdanv}@cs.cmu.edu
†Carnegie Mellon University Software Engineering Institute. eschwartz@cert.org

Abstract
A common tool used by security professionals for reverse-
engineering binaries found in the wild is the decompiler. A
decompiler attempts to reverse compilation, transforming a
binary to a higher-level language such as C. High-level lan-
guages ease reasoning about programs by providing useful
abstractions such as loops, typed variables, and comments, but
these abstractions are lost during compilation. Decompilers
are able to deterministically reconstruct structural properties
of code, but comments, variable names, and custom variable
types are technically impossible to recover.

In this paper we present DIRTY (DecompIled variable
ReTYper), a novel technique for improving the quality of
decompiler output that automatically generates meaningful
variable names and types. DIRTY is built on a Transformer-
based neural network model and is trained on code automati-
cally scraped from repositories on GitHub. DIRTY uses this
model to postprocesses decompiled files, recommending vari-
able types and names given their context. Empirical evalua-
tion on a novel dataset of C code mined from GitHub shows
that DIRTY outperforms prior work approaches by a sizable
margin, recovering the original names written by developers
66.4% of the time and the original types 75.8% of the time.

1 Introduction

Reverse engineering is an important problem in the context
of software. For example, security professionals use reverse
engineering to understand the behavior or provenance of mal-
ware [12, 54, 55], discover vulnerabilities in libraries [49, 55],
or patch bugs in legacy software [49, 55]. However, since it
is rare to have access to source code, analysis is often per-
formed at the binary level. This can be challenging: compilers
optimize for execution speed or binary size, not readability.

A number of tools attempt to make the process of
examining binary programs easier. One is the disassembler,
which converts raw binary code to a sequence of instructions
executed by the compiler. Although this produces human read-
able code, reasoning about assembly code can still be difficult.

Operations that are simple to specify at a high-level are often
translated into a long sequence of assembly instructions (e.g.,
looping over the elements of an array requires instructions
that maintain an index variable, increment it each iteration of
a loop, and conditionally jump on its value). Another, more
sophisticated tool is a decompiler, which transforms code
from binary to a high-level language such as C.

Although decompilers generate abstractions that improve
code readability and are widely used by reverse engineers in
practice, they never fully reconstruct the original developer-
written code [43], since the process of compilation irrevocably
destroys some information. This means that useful pieces of
information, such as comments, identifier names, and types,
all of which are known to meaningfully contribute to program
comprehension [17, 30], are typically absent from decompiler
output. Nonetheless, recent work has shown that it is possi-
ble to reconstruct some useful information about the original
code during decompilation, namely identifier [25, 29] and
procedural names [8], even when this information is not part
of the binary. The key insight is that human-written code is of-
ten repetitive in the same context [2, 9, 23]. Therefore, given
large corpora of human-written code, one can learn highly
probable names for identifiers in similar contexts, even if not
always the exact names the authors of the code chose origi-
nally. This is an important improvement on the facilities of
modern decompilers, which almost completely ignore names
beyond simple heuristics (e.g., i and j for loop guards).

In this paper we focus on the closely related problem of
recovering meaningful variable types, an important additional
layer of code documentation that can help improve readability
and understandability [14, 43, 48]. Figure 1 shows an example
of a simple function and its decompilation. The author of the
original code in Figure 1a has defined a pnt structure that
contains two float members used to refer to the X and Y
coordinates of a point. This makes it possible to define a
new point and refer to its members by name (e.g., p1.x and
p1.y). Because the decompiler does not know about the pnt

structure, it creates two float arrays instead of generating a
struct (Figure 1b). This can harm understandability. First, it

typedef struct point {
float x;
float y;

} pnt;

void fun() {
pnt p1, p2;
p1.x = 1.5;
p1.y = 2.3;
// ...
use_pts(&p1, &p2);

}

(a) Original code

void fun() {
float v1[2], v2[2];
v1[0] = 1.5;
v1[1] = 2.3;
// ...
use_pts(v1, v2);

}

(b) Decompiled fun

Figure 1: A function with a struct and its decompilation.

void fun() {
// stack layout:
// [xxx][p][yyyy]
char x[3];
int y;
// ...

}

(a) Original code

void fun() {
// stack layout:
// [xxxx][yyyy]
char x[4];
int y;
// ...

}

(b) Decompiled fun

Figure 2: A function illustrating the data layout problem in
decompilation. In the stack layout the characters x, y, and p

represent a single byte assigned to the variables x and y, or
padding data respectively. The decompiler cannot recognize
that the inserted padding data does not belong to the x array.

is not clear that v1 and v2 represent points at all. Second, even
if better names were chosen, such as point1 and point2, and a
reverse engineer concluded that they represent 2D points, it
is not clear which array index refers to which coordinate, or
even that the coordinates are Cartesian (instead of e.g., polar).

Unlike names, types are constrained by memory layouts,
and thus theoretically should be easier to recover (only types
that fit that memory layout should be considered as candi-
dates). In fact, decompilers already narrow down possible type
choices using the fact that base types targeting a specific plat-
form can only be assigned to variables with a specific memory
layout (e.g., on most platforms an int variable can never be
retyped to a char because they require different amounts of
memory). This already makes it possible for decompilers to
infer base types and a small set of commonly-used typedefs.

On the other hand, despite performing a battery of complex
binary analyses, the data layout inferred by the decompiler is
often incorrect, which makes the problem harder. For exam-
ple, consider the program shown in Figure 2. Two top-level
variables are declared, x: a three-byte char array, and y: a four-
byte int. During compilation, the compiler inserts a single
byte of padding after the x array for alignment. When this
function is decompiled, the decompiler can tell where x and
y begin, but it cannot tell if x is a three-byte array followed
by a single byte of padding, or a four-byte array whose last
element is never used.

Prior work on reconstructing types falls into two groups.
The first, such as TIE [31], attempt to recover syntactic types,

e.g., struct {float; float}, but not the names of the structure
or its fields. The second, such as REWARDS [33], attempt
to also recover the type name (referred to as semantic types).
However, these systems typically only support a small set of
manually-defined types and well-known library calls. Neither
the first nor the second deal with the padding issue above.

In contrast, our system DIRTY (DecompIled variable Re-
TYper) recovers both semantic and syntactic types, handles
padding, and is not limited to a small set of manually-defined
types. Instead, DIRTY supports 48,888 possible types encoun-
tered “in the wild” in open-source C code (compared to the
150 different type names in 84 standard library calls supported
by REWARDS). At a high level, DIRTY is a Transformer-
based [50] neural network model to recommend types in a
particular context, which operates as a postprocessing step to
decompilation. DIRTY takes a decompiled function as input,
and outputs probable names and types for all of its variables.

To build DIRTY, we start by mining open-source C code
from GITHUB, and then use a decompiler’s typical ability to
import variable names and types from DWARF debugging
information to create a parallel corpus of decompiled func-
tions with and without their corresponding original names
and types. As a side effect of this large-scale mining effort,
we also automatically compile a library of types encountered
across our open-source corpus. We then train DIRTY on this
data, introducing two task-specific innovations. First, we use
a Data Layout Encoder to incorporate memory layout infor-
mation into DIRTY’s predictions and simultaneously address
a fundamental limitation of decompilers caused by padding.
Second, we address both the variable renaming and retyp-
ing tasks simultaneously with a joint Multi-Task architecture,
enabling them to benefit from each other.

We show that DIRTY can assign variable types that agree
with those written by developers up to 75.8% of the time, and
DIRTY also outperforms prior work on variable names.

Note that even though we implement DIRTY on top of the
Hex-Rays1 decompiler because of its positive reputation and
its programmatic access to decompiler internals, our approach
is not fundamentally specific to Hex-Rays, and should concep-
tually work with any decompiler that names variables using
DWARF debug symbols.

In summary, we contribute:
• DIRT—the Dataset for Idiomatic ReTyping—a large-

scale public dataset of C code for training models to
retype or rename decompiled code, consisting of nearly
1 million unique functions and 368 million code tokens.

• DIRTY—the DecompIler variable ReTYper—an open-
source Transformer-based neural network model to re-
cover syntactic and semantic types in decompiled vari-
ables. DIRTY uses the data layout of variables to im-
prove retyping accuracy, and is able to simultaneously
retype and rename variables in decompiled code.

1https://www.hex-rays.com/products/decompiler/

https://www.hex-rays.com/products/decompiler/

Example output from DIRTY is available online at
https://dirtdirty.github.io/explorer.html.

2 Model Design

In this section, we describe our machine learning model and
decisions that influenced its design, starting with some rel-
evant background. Our model is a neural network with an
encoder-decoder architecture.

2.1 The Encoder-Decoder Architecture
Our task consists of generating variable types (and names) as
output given individual functions in decompiled code as input.
This means that unlike a traditional classification problem
with a fixed number of classes, both our input and output are
sequences of variable length: input functions (e.g., fed into the
network as a sequence of tokens) can have arbitrarily many
variables, each requiring a type (and name) prediction.

Therefore, we adopt an encoder-decoder architecture [7],
commonly used for sequence-to-sequence transformations,
as opposed to the traditional feed-forward neural network ar-
chitecture used in classification problems with a fixed-length
input vector and prediction target. More specifically, the en-
coder takes the variable-length input and encodes it as a fixed-
length vector. Then, this fixed-length encoding is passed to
the decoder, which converts the fixed-length vector into a
variable-length output sequence. This architecture, further en-
hanced through the attention mechanism [3], has been shown
to be effective in many tasks such as machine translation, text
summarization [36], and image captioning [53].

2.2 Transformers
There are several ways to implement an encoder-decoder.
Until recently, the standard implementation used a particu-
lar type of recurrent neural network (RNN) with specialized
neurons called long short-term memory units; these neurons
and networks constructed from them are commonly referred
to as LSTMs [24]. More recently, Transformer-based mod-
els [4, 15, 42, 57], building on the original Transformer archi-
tecture [50], have been shown to outperform LSTMs and are
considered to be the state-of-the-art for a wide range of natural
language processing tasks, including machine translation [4],
question answering and abstractive summarization [10, 32],
and dialog systems [1]. Transformer-based models have also
been shown to outperform convolutional neural networks such
as ResNet [19] on image recognition tasks [11].

Transformers have several properties that make them a
particularly good fit for our type prediction task. First, they
capture long-range dependencies, which commonly occur in
program code, more effectively than RNNs. For example, a
variable declared at the beginning of a function may not be
used until much later; an ideal model captures information

about all uses of a variable. Second, transformers can perform
more computations in parallel on typical GPUs than LSTMs.
As a result, training is faster, and a Transformer can train on
more data in the same amount of time. In our case, this en-
ables us to train on our large-scale, real-world dataset, which
consists of 368 million decompiled code tokens.

Although there have been a number of advances in
neural machine translation since the original Transformer
model [50], most recent advances focus on improvements
on other factors, such as training data and objectives [4, 10,
32, 42], dealing with longer sequences [57], efficiency [6],
and scaling [15], rather than changing the fundamental archi-
tecture. Moreover, most of these improvements are tailored
for the natural language domain, making them less general-
izable than the original model and inapplicable to our task.
Instead, we keep our model simple, which allows different,
better architectures or implementations to be used out-of-the-
box in the future. For example, the recent Vision Transformer
(ViT) [11], which also intentionally follows the original Trans-
former architecture “as closely as possible” when adapting
Transformers to computer vision tasks.

We omit the technical details of Transformers, includ-
ing multi-headed self-attention, positional encoding, and the
specifics of training as they are beyond the scope of this paper.

2.3 DIRTY’s Architecture
In DIRTY, we cast the retyping problem as a transformation
from a sequence of tokens representing the decompiled code
to a sequence of types, one for each variable in the original
source code. This section describes DIRTY’s architecture in
detail. Figure 3 shows an overview of the architecture.

Code Encoder. The encoder converts the sequence of code
tokens of the decompiled function (lower-left of Figure 3),
x = (x1,x2, . . . ,xn), into a sequence of representations,

H = (h1,h2, . . . ,hn) , (1)

where each continuous vector hi ∈ Rd_model is the contextual-
ized representation for the i-th token xi. During training, the
encoder learns to encode the information in the decompiled
function x relevant to solving the task into H. For example, for
a code token xi =v1, useful information about v1 in the con-
text of x (e.g., operations performed on v1) is automatically
learned and stored in hi.

Specifically, we denote the encoding procedure as
H = fen (x;θen) , (2)

where the input x = (x1,x2, . . . ,xn) is the code token se-
quence of the decompiled function and the output H =
(h1,h2, . . . ,hn) is the sequence of deep contextualized repre-
sentations. fen denotes the encoder, implemented with neural
networks, and θen denotes its learnable parameters.

The ultimate goal of DIRTY is to make type predictions
about each variable that appears in the decompiled function.
However, the encoder produces hidden representations for

https://dirtdirty.github.io/explorer.html

,QSXW�7RNHQV

9$5�9$5�

&RGH�(QFRGHU

7\SH�'HFRGHU

VA
R1

VA
R2

struct timeval {
 time_t tv_sec;
 suseconds_t tv_usec;
}

$WWHQWLRQ

� Y� Y� �

VA
R1

3RROLQJ

'DWD�/D\RXW
ID: VAR1
Size: 12
Loc: Stack 0x1c
Offsets: [0, 8]

/RJLWV

0DVN
+

0DVNHG�
/RJLWV

'DWD�/D\RXW�
(QFRGHU

…

…

D��(QFRGHU E��'HFRGHU

Figure 3: Overview of DIRTY’s neural model architecture for predicting types. Decompiled code is sequentially fed into the
Code Encoder. When the input of the code encoder corresponds to a specific variable (e.g., VAR1), it is pooled with other instances
of the same variable to generate a single encoding for that variable. Each pooled encoding is then passed into the Type Decoder,
which outputs a vector of the log-odds (logits) for predicted types. This vector is masked with a vector generated by the Data
Layout encoder and the most probable type is chosen from the masked logits.

every code token (e.g., “v1”, “:”, “=”, “v1”, “+”, “1” are all
tokens). Because a variable can appear multiple times in the
code tokens of a function, we need a way to summarize all
appearances of a variable. We achieve this through pooling,
where the representation for the t-th variable2 is computed
based on all of its appearances in the code tokens, At , using
an average pooling operation [29]

vt = AveragePoolxi∈At
hi, t = 1, . . . ,m (3)

where m is the number of variables in the function. This solu-
tion removes the burden of gathering all information about a
variable throughout the function into a single token represen-
tation from the model. The pooled representation for the first
variable, VAR1, is shown in the upper-left of Figure 3.

Type Decoder. Given the encoding of the decompiled tokens,
the decoder predicts the most probable (i.e., idiomatic) types
for all variables in the function. The decoder takes the encoded
representations of the code tokens (H) and identifiers (vt) as
input and predicts the original types ŷ = (ŷ1, ŷ2, . . . , ŷm) for all
m variables in the function. Unlike the encoder, the decoder
predicts the output step-by-step using former predictions as
input for later ones.3

At each time step t, the decoder tries to predict the type for
the t-th variable as follows:

1. The decoder takes the code representations H and vari-
able representation vt from the encoder, and also previ-
ous predictions ŷ1, ŷ2, . . . , ŷt−1 from itself, to compute a

2t is commonly used in RNN literature because it refers to a “timestep”.
3This is known as an autoregressive model.

hidden representation zt ∈ Rd_model

zt = fde(ŷ1, ŷ2, . . . , ŷt−1,vt,H;θde) (4)
where fde, θde denotes the decoder and its parameters.
The hidden representation zt is then used for prediction.

2. The output layer of the decoder then uses its learnable
weight matrix W and bias vector b to transform the
hidden representation zt to the logits for prediction

st = Wzt +b, (5)

where st ∈R|T |, W ∈R|T |×d_model , b ∈R|T |, and |T | is
the number of types in the type library. The logits st is
the unnormalized probability predicted by the model, or
the model’s scores on all types

3. Finally, the softmax function computes a probability dis-
tribution over all possible types from st

Pr(ŷt |ŷ1, ŷ2, . . . , ŷt−1,x) = softmaxst (6)

Note that the type library T is fixed, meaning DIRTY can
only predict types that it has seen during training. We discuss
this limitation, its implications, and potential mitigations in
Section 5. However, DIRTY can recover structure types as
well as normal types, as both are simply entries in T .

The goal of the decoder is to find the optimal set of
type predictions for all variables in a given function (i.e.,
the predictions with the highest combined probability):
argmaxŷ Pr(ŷ|x). This probability can be factorized as the
product of probabilities at each step:

Pr(ŷ | x) =
m

∏
t=1

Pr(ŷt | ŷ1, ŷ2, . . . ŷt−1,x) . (7)

We’ve shown how to compute Pr(ŷt | ŷ1, ŷ2, . . . ŷt−1,x) with
the decoder, but finding the optimal ŷ = (ŷ1, ŷ2, . . . , ŷm) is not
an easy task, because each variable can have |T | possible pre-
dictions, and each prediction affects subsequent predictions.
The time complexity of exhaustive search is O(|T |m). There-
fore, finding the optimal prediction is often computationally
infeasible for large functions. A simple approach is greedy
decoding, selecting the most promising prediction at every
step based on the previously selected predictions, i.e., taking
the max ŷt = argmaxyt

Pr (ŷt = i | ŷ1, ŷ2, . . . , ŷt−1,x). Greedy
decoding is fast, but it often finds subpar predictions.

In DIRTY, we use beam search [37], a compromise be-
tween greedy decoding and an exhaustive search. Rather than
only taking the most promising prediction (greedy), beam
search considers a configurable number of most promising
predictions at each step. In practice, it is usually able to find
good (but not optimal) predictions, but is significantly faster
than an exhaustive search.

2.4 Data Layout Encoder

The model described so far only uses information encoded
into the code tokens of the decompiled representation. But to
actually create such an output, decompilers typically perform
a battery of complex binary analyses. Some decompilers al-
low the user to programmatically access the interim results
from some of these analyses. In particular, Hex-Rays provides
information about the storage location (e.g., register or stack
offset), size, nested data types (e.g., if the variable is a struct),
and offsets of its members, if any (e.g., offsets in an array or of
fields in a struct), for each variable in a function. Intuitively,
this information can help DIRTY rule out bad predictions. For
instance, a variable that is 4 bytes long could not be a char

type because it would not fit.
One inefficient approach could use this information as a

hard constraint on the decoder’s predictions, i.e., a mask which
sets the probability of any “incompatible” types to 0. How-
ever, this runs into a problem when the decompiler incorrectly
reconstructs the data layout (see Figure 2). To mitigate this,
DIRTY learns a soft mask, reducing probabilities without
setting them to 0. For example, DIRTY can learn based on
many observations that a decompiled char[4] should be typed
as a char[3] 5% of the time and char[4] 80%, and adjust the
predictions of the type decoder accordingly. This allows the
model to learn how best to incorporate the data layout infor-
mation from the decompiler, including when the information
is likely to be incorrect. Figure 3 illustrates where the data
layout encoder fits into the overall architecture.

To implement the soft mask encoder, we jointly train an-
other Transformer encoder to use data layout information to
generate a mask. Figure 4 shows the internals of the data
layout encoder. First, variable data layout is passed to the
encoder. There are three parts to the data layout for a specific
variable, each of which is simply converted to a token:

VAR1 Data Layout

Data Layout Encoder

Loc_
S0x1c

epos1

e17RNHQ�
(PEHGGLQJV

�
3RVLWLRQDO�
(PEHGGLQJV

7RNHQL]HG�
/D\RXW Size_12

epos2

e2
�

Offset_
0

Offset_
8

epos3 eposn

e3 en
� �

$YHUDJH�3RROLQJ

7UDQVIRUPHU�(QFRGHU�/D\HUV

· =

Wm m1

Figure 4: The Data Layout Encoder of DIRTY. The data
layout for a specific variable, including its location, size, and
offsets of its members is passed into the layout encoder (top),
generating a mask (bottom).

Location: A variable can be located either in registers (to-
kenized as [Loc_<Register Name>]) or on the stack
([Loc_S<Offset>]). E.g., a variable stored 28 bytes be-
low the stack pointer is tokenized as [Loc_S0x1c].

Size: Measured in bytes and tokenized as [Size_<Size>].

Internal Offsets: The offsets of members of the type (either
array elements or struct fields), in bytes. E.g., the type
int[2] would have the offsets {0,4}, while a struct with
two char fields would have the offsets {0,1}. These are
tokenized as a sequence of [Offset_<Offset>]. For
consistency, we also use [Offset_0] for types without
substructure (i.e., scalar types like int).

The tokenized data layout information is concatenated into a
sequence denoted Mt and then encoded as

mt = flayout
(
Mt ;θlayout

)
, (8)

where mt is the hidden representation of data layout informa-
tion. Inspired by Michel and Neubig [35], we adjust the output
type distribution with data layout information. Formally, we
modify Equation (5) to fuse the data layout representation mt
into the final output layer:

s̃t = st +Wmmt = Wzt +Wmmt +b, (9)
where st is the logits predicted by the Type Decoder, Wmmt
is the “soft mask” produced by the Data Layout Encoder,
and s̃t is the new masked logits. Wm ∈ R|T |×d_model denotes
the learnable weight matrix in the final layer of Data Layout
Encoder for transforming the data layout representation mt ∈
Rd_model to the mask ∈ R|T |. This implements a soft filter for
type prediction using data layout information.

+
/RJLWV

0DVN

0DVNHG�
/RJLWV

0XOWL�7DVN�'HFRGHU

VA
R1

VA
R1

(
QF
RG
HU

VA
R2

struct timeval {
 time_t tv_sec;
 suseconds_t tv_usec;
}

Type

tv

Name

…

Type

…

…

y1 z1 y2

+

Figure 5: The multi-task decoder for DIRTY, which predicts
both variable types and names. The encoder architecture is
the same as in Figure 3. Each variable is passed to the decoder
twice, the first time a type is predicted (yi), and the second time
a name is predicted (zi). Note that the data layout encoding of
a variable is only used to weight type predictions.

2.5 Multi-Task
Many variable names are indicative of their underlying type.
For example, i and j are often used to represent integers, s and
str are often used to represent strings, etc. Thus, intuitively,
there is some connection between a variable’s name and its
type. Indeed, measuring the adjusted mutual information [51]
between variable names and types in our dataset, we find a
moderate association (0.41 on the scale [0,1]). Since variable
names can often be recovered from decompiled code using
neural models [29], this may help us learn to predict variable
types as well (and vice versa).

To test this, we extend DIRTY to also predict names with a
single, integrated multi-task model. That is, we also predict a
variable name for each variable in the function

ẑ = (ẑ1, ẑ2, . . . , ẑm) (10)
where ẑt denotes the predicted name for the t-th variable.

DIRTY’s decoder outputs are interleaved to predict names
and types in parallel (Figure 5). The first time the decoder is
invoked on the t-th variable, it outputs the predicted type (ŷt)
and the second time it outputs a predicted name (ẑt).

The training and prediction procedures remain almost the
same, with two notable exceptions. First, to improve perfor-
mance, the Data Layout encoder is not activated when the
decoder is predicting a variable’s name. This is unnecessary
because name prediction depends on the predicted type, which
has already incorporated the data layout information. Prelim-
inary experiments confirmed no improvement in accuracy
when using the Data Layout encoder for name prediction.

Second, there are two ways to interleave the predictions of
types and names: types first or names first. In theory, this does

not matter because they are equivalent if the learned model
and the decoding algorithm are ideal. In practice, we chose
to predict types first because we believe the type prediction
task should be easier (since there is more information) and it
better reflects how developers define variables.

3 Evaluation

We conducted experiments to evaluate DIRTY, answering the
following research questions:
RQ1: How effective is DIRTY at idiomatic retyping?

RQ2: How well does DIRTY perform on other decompila-
tion benchmarks compared to prior work?

RQ3: How does each component of DIRTY contribute to the
retyping and renaming performance?

RQ4: How does compiler optimization affect DIRTY’s pre-
diction accuracy?

3.1 Experimental Setup
First, we introduce the DIRT dataset we used for training
DIRTY, and experimental setup details. The detailed hyper-
parameters for our deep learning model and environment con-
figuration are described Appendix A.

Dataset for Idiomatic ReTyping (DIRT). To create DIRT,
we queried a 2017 version of the GHTORRENT4 database,
compiling a list of public GITHUB repositories predominantly
written in C. We then cloned these repositories locally using
an open-source tool, GHCC,5 to automatically build them.
GHCC identifies build instructions (e.g., Makefiles) in reposi-
tories, creates a Docker container with the requisite libraries,
and attempts to build the project. We used GCC version 9.2.0.
For most experiments, we explicitly disable optimizations
using the -O0 compiler flag. We also evaluated DIRTY at
higher optimization levels in Section 3.5. This process re-
sulted in 4,346,134 automatically compiled 64-bit x86 bi-
naries. After compilation, we then decompiled each binary
using Hex-Rays and filtered out any functions that did not
have variables requiring renaming or retyping. Following
DIRE [29], we compiled each binary again with debugging
information to align decompiler-assigned variable names (e.g.,
v1) and developer-assigned variable names (e.g., picture) to
form training examples.

Since DIRE was only concerned with renaming, its dataset
did not include variables which did not correspond to a named
variable in the original source code. Many such variables are
actually caused by mistakes in the decompiler during type
recovery, for instance decompiling a structure to multiple
scalar variables instead. Since the goal of DIRT is to enable
type recovery and fix such mistakes, we label these instances

4https://ghtorrent.org
5https://github.com/huzecong/ghcc

https://ghtorrent.org
https://github.com/huzecong/ghcc

as <Component> to denote that they are components of a variable
in the source code. This allows the model to combine them
with other variables into an array or a struct.

The final DIRT dataset consists of 75,656 binaries ran-
domly sampled from the full set of 4,346,134 binaries to
yield a dataset that we could fully process based on the com-
putational resources we had available. We split the dataset
per-binary as opposed to per-function, which ensures that dif-
ferent functions from the same binary cannot be in both the
test and training sets. The training dataset consists of 997,632
decompiled functions, and a total number of 48,888 different
types. We also preprocess the decompiled code with byte-pair
encoding (BPE) [45], a widely adopted technique in NLP
tasks to represent rare words with limited vocabulary by to-
kenizing them into subword units. After this step, the DIRT
dataset consists of 368 million decompiled code tokens, and
an average of 220.3 tokens per function. Detailed statistics
about the DIRT dataset and the train/valid/test split can be
found in Table 11 in Appendix A.

Metrics. We evaluate DIRTY using two metrics:

Name Match: Following DIRE [29], we consider a variable
name prediction correct if it exactly string matches the
name assigned by the original developer. We compute
the prediction accuracy as the average percentage of
correct predictions across all functions in the test set.

Type Match: We consider a type prediction to be correct
only if the predicted type fully matches the ground truth
type, including data layout, and the type and name of
any fields if applicable. We serialize types to strings and
use string matching to determine type matching.

Note that both metrics are conservative. Predictions may
still be meaningful, even if not identical to the original names.
A human study evaluating the quality of predicted types and
names is beyond the scope of the current paper.

Meaningful Subsets of the Test Data. We introduce several
subsets of the DIRT test set to better interpret the results:
Function in training vs Function not in training.

Similarly to Lacomis et al. [29], Function in training
consists of the functions in the test set that also appear
in the training set, which are mainly library functions.
Allowing this duplication simulates the realistic use
case of analyzing a new binary that uses well-known
libraries. We also separately measure the cases where
the function is not known during training (i.e., Function
not in training) to measure the model’s generalizability.

Structure types. Only 1.8% of variables in DIRT have struc-
ture types. Because of this low percentage, examining
overall accuracy may not reflect DIRTY’s accuracy when
predicting structure types, which we have found anec-
dotally to be more challenging. To mitigate this, we
separately measure DIRTY’s accuracy on structures in
addition to its overall accuracy.

Overall In Train Not in Train
Method All Struct All Struct All Struct

FSize 23.6 9.7 23.5 9.1 23.8 10.4
HR 37.9 28.7 39.0 28.7 36.4 28.7
DIRTY 75.8 68.6 89.9 79.2 56.4 54.6

Table 1: DIRTY has higher retyping accuracy than Frequency
By Size (FSize) and Hex-Rays (HR) on the DIRT dataset, both
for all types (All) and on structural types alone (Struct).

3.2 RQ1: Overall Effectiveness

We evaluate DIRTY on the idiomatic retyping task and report
its accuracy compared to several baselines.

Baselines. We measure our accuracy with respect to two base-
line methods for predicting variable types:
Frequency by Size The number of bytes a variable occupies

is the most basic information for a type. For this tech-
nique, we predict the most common developer-assigned
type for a given size (as reported by the decompiler).
E.g., int is the most common 4-byte type, and __int64

is the most common 8-byte type; this baseline simply
assigns these types to variables of the respective size.

Hex-Rays [22] During decompilation, Hex-Rays already pre-
dicts a type for each variable, so we can use these predic-
tions as a baseline. However, Hex-Rays cannot predict
developer-generated types without prior knowledge of
them, e.g., Hex-Rays assigns unsigned __int16 instead
of the more common uint16_t, which puts it at an un-
fair disadvantage. For this baseline, we reassign the type
chosen by Hex-Rays to the most common developer-
chosen name associated with it (e.g., we replace every
unsigned __int16 with uint16_t.

Results. As shown in Table 1, DIRTY can correctly recover
75.8% of the original (developer-written) types from the de-
compiled code. In contrast, Hex-Rays, the highest scoring
baseline, can only recover 37.9% of the original types.

As expected, DIRTY performs even better when it has seen
a particular function before (In Train), generating the same
type as the developer 89.9% of the time. This indicates that
DIRTY works particularly well on common code such as
libraries. Even when a function has never been seen (Not in
Train), DIRTY predicts the correct type 56.4% of the time.

Table 1 also shows the performance of DIRTY on structure
types alone. Correctly predicting structure types is more diffi-
cult than predicting scalar types, and all models show a drop in
performance. Despite this drop, DIRTY still achieves 68.6%
accuracy overall, and 54.6% accuracy on the Function not in
training category. Frequency By Size struggles on structures
with only 9.7% accuracy; this is expected since structures of a
given size can have many possible types. Hex-Rays is slightly

more accurate at 28.7%, as the decompiler is able to analyze
the layout of structures.

Table 2 shows several examples of retyping predictions
from the Function not in training partition. These examples
show that accuracy is not the full story; even when DIRTY
is unable to predict the correct type, the differences are often
minor (e.g., unsigned int v. int, and const char * v. char *).
The bottom half of Table 2 shows prediction examples of
structure types.6 DIRTY is able to recover the actual struc-
ture much of the time. At other times, DIRTY also produces
some semantically reasonable but syntactically unacceptable
predictions, like char[32] for class std::string.

3.3 RQ2: Comparison with Prior Work
We further compare DIRTY with recent work on type recov-
ery [58] and variable name recovery [29].

Type Recovery. While there is prior work on type recovery
(see also Section 4), none of the existing approaches, TIE [31],
Howard [47], Retypd [39], TypeMiner [34] and OSPREY [58],
are publicly available. We are grateful to Zhang et al. [58],
the authors of OSPREY, for kindly sharing their evaluation
material so we could compare results.

OSPREY is a recently proposed probabilistic technique
for variable and structure recovery that outperforms exist-
ing work including Howard [47], Angr [46], Hex-Rays [22]
and Ghidra [58]. The OSPREY authors provided us with the
GNU coreutils7 executables they used in their evaluation,
which were compiled with -O0 to disable optimization. We
ran DIRTY on these executables, but only evaluated on stack
and heap variables, since OSPREY does not recover register
variables. This benchmark consists of 101 binaries and 17,089
variables. We also define two subsets of the dataset:
Visited A subset of 13,020 variables that are covered by

BDA [59], a binary abstract interpretation tool that OS-
PREY relies on. OSPREY is expected to perform better on
these covered functions than uncovered functions, which
we also report as Non-Visited.8 However, DIRTY is not
subject to this limitation.

Struct A subset of 3,061 variables related to structure types.
Following OSPREY, we include structs allocated on the
stack, pointers to structs on the heap, and arrays of structs.
These variables do not have to be in the Visited subset.

Because DIRTY can predict up to 48,888 different types,
each including the full syntactic and semantic information,
we convert its predictions in a post-hoc manner to make it
comparable with OSPREY.9

6We omit the full predicted contents of structs here for conciseness.
7https://www.gnu.org/software/coreutils/
8A majority of uncovered functions are unreachable from the entry point

of the binary, and others are indirect call targets which BDA fails to analyze.
9Specifically, we discard type names and field names. For example, bool

and char are both converted to Primitive_1, which stands for a primitive
type occupying 1 byte of memory, const char * and char * are converted

Table 3 compares the accuracies of both systems. On the
overall coreutils benchmark, DIRTY slightly outperforms OS-
PREY (76.8% vs 71.6%). OSPREY outperforms DIRTY on
the Visited subset, but as expected, performs worse on the
Non-Visited functions. Meanwhile, DIRTY is more consistent
on Visited and Non-Visited. When only looking at structure
types, OSPREY outperforms DIRTY (26.6% vs 15.7%).

However, this comparison puts DIRTY at a disadvantage,
since OSPREY was designed for this task of recovering syn-
tactic types, while DIRTY was trained to recover variable and
type/field names, and much of this information is thrown out
for this evaluation. To address this, we trained a new model,
DIRTYLight , on DIRT, but tailored the training to OSPREY’s
simplified task. The accuracy of this model is also reported in
Table 3. As expected, the DIRTYLight model outperforms the
off-the-shelf DIRTY model, since it is trained specifically for
this task. DIRTYLight greatly improves prediction accuracy
on the Struct subset, and even outperforms OSPREY.

To further get a fine-grained comparison with OSPREY, we
calculate accuracy on 101 coreutils binaries individually, and
show the prediction accuracies of DIRTY and OSPREY with
respect to the number of variables in the programs in Figure 6.

We observe that DIRTY is competitive compared with OS-
PREY. Interestingly, while the results on large binaries are
close, DIRTY performs better on small binaries. This suggests
our learning-based method trained on GitHub data might gen-
eralize better on rare patterns compared to empirical methods
that might have been developed based on observations on a
limited number of common and relatively larger programs.

In addition, DIRTY is also much faster and scalable. On
average, OSPREY takes around 10 minutes to analyze one
binary in coreutils, while it takes 75 seconds for DIRTYLight
to finish inference on the whole coreutils benchmark.

Overall, we believe both methods are valuable. Since at this
point DIRTY is using Hex-Rays recovered data layout as input
to its Data Layout Encoder, we believe a promising future
direction is to combine these two methods—using OSPREY’s
results as the input to DIRTY’s, and the combined approach
can potentially achieve even better results.

Name Recovery. The Decompiled Identifier Renaming En-
gine (DIRE) is a state-of-the-art neural approach for decom-
piled variable name recovery [29]. The DIRE model consists
of both a lexical encoder and a structural encoder, utilizing
both tokenized decompiled code and the reconstructed ab-
stract syntax tree (AST). In contrast, DIRTY’s simpler en-
coder only uses the tokenized decompiled code.

The DIRE authors provide a public dataset for decompiled
variable renaming compiled with -O0. To compare with DIRE,
we train DIRTY on the DIRE dataset and also train DIRE
on the DIRT dataset. Since DIRE is focused on variable re-
naming, and there is no type information collected in their

to Pointer<Primitive_1>, and struct ImVec2 {float x; float y
;} converted to Struct<Primitive_4, Primitive_4>.

https://www.gnu.org/software/coreutils/

int char * class std::string

int 88.8% char * 60.3% class std::string 47.5%
unsigned int 4.3% const char * 11.4% char[32] 24.2%
<Component> 2.7% <Component> 4.4% char[47] 14.6%
uint32_t 0.8% __int64 4.1% class std::__cxx11::basic_string 6.1%
u_int32_t 0.3% size_t 1.8% char[40] 3.5%

Table 2: Example variable types from the Function not in training testing partition. The top rows are the developer-assigned
types and the columns show DIRTY’s top-5 most frequent predictions. <Component> represents a prediction that the variable in the
decompiled code does not correspond to a variable in the source code (e.g., because it corresponds to a member of a struct).

Coreutils
Model All Visited Non-Visited Struct

OSPREY 71.6 83.8 32.4 26.6
DIRTY 76.8 79.1 69.6 15.7
DIRTYLight 80.1 80.1 80.1 27.7

Table 3: Accuracy comparison on the Coreutils benchmark.

100 200 300 400 500

Number of Variables in Binary

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

DIRTY

OSPREY

Figure 6: Accuracy of DIRTY and OSPREY on 101 individual
programs in the coreutils benchmark with different number of
variables. The two methods are competitive on large binaries,
while DIRTY performs much better on small binaries.

DIRE Dataset DIRT Dataset
Model All FIT FNIT All FIT FNIT

DIRE 72.8 84.1 33.5 57.5 75.6 31.8
DIRTY 81.4 92.6 42.8 66.4 87.1 36.9

Table 4: Accuracy comparison of DIRE and DIRTY on the
DIRE and DIRT datasets. Accuracy is reported overall (All),
when functions are in the training set (FIT), and when func-
tions are not in the training set (FNIT).

Accuracy
Model Overall Struct

DIRTYS 74.5 65.4
DIRTY 75.8 68.6

Table 5: Effect of model size. The accuracy columns show
the overall accuracy and the accuracy on struct types.

dataset, we cannot use the Data Layout Encoder for these
experiments. Instead, we only use our Code Encoder and Re-
naming Decoder. We report the accuracy of both systems in
Table 4. DIRTY significantly outperforms DIRE in terms of
overall accuracy on both the DIRE dataset (81.4% vs. 72.8%),
and on the DIRT dataset (66.4% vs. 57.5%). DIRTY also
generalizes better than DIRE: when functions are not in the
training set, DIRTY outperforms DIRE on both the DIRE
(42.8% vs. 33.5%) and the DIRT datasets (36.9% vs. 31.8%).

DIRTY outperforms DIRE in spite of the fact that it only
leverages the decompiled code, whereas DIRE leverages both
the decompiled code and the reconstructed AST from Hex-
Rays. Since the primary difference between DIRTY without
type prediction and DIRE is that it uses Transformer as its
encoder and decoder network, we attribute this improvement
to the power of Transformers, which allow modeling interac-
tions between any pair of tokens, unrestricted to a sequential
or tree structure as in DIRE.

Also notable is how DIRTY trains faster than DIRE. We
found that DIRTY surpassed DIRE in accuracy after training
for 30 GPU hours, compared to the 200 GPU hours required to
train DIRE on the full DIRT dataset, which we again attribute
to the efficiency of the Transformer architecture.

3.4 RQ3: Ablation Study

To understand how each component of DIRTY contributes to
its overall performance, we perform an ablation study.

Model Size. Transformers have the merit of scaling easily
to larger representational power by stacking more layers, in-
creasing the number of hidden units and attention heads per
layer [10, 50]. We compare DIRTY to a modified, smaller

20% 40% 60% 80% 100%

Size of Training Set

0%

20%

40%

60%

80%

100%

A
cc

ur
ac

y

All

In train

Not in train

Figure 7: Effect of training data size. With 100% of the data,
the accuracies of All, In train, and Not in train are 75.8%,
89.9%, and 56.4% respectively. With 20%, these drop to
67.9%, 82.3%, and 48.0% respectively.

version DIRTYS. DIRTY contains 167M parameters, while
DIRTYS only 40M. Table 10 contains details of the hyperpa-
rameter differences between the two models.

Table 5 shows overall DIRTY is 75.8% accurate vs. 74.5%
for DIRTYS’s. This indicates increasing the model size has
a positive effect on retyping performance. The gain from
increased model capacity is notably larger when comparing
performance on structures. This improvement suggests that
complex types are more challenging and require a model with
larger representational capacity. We are not able to train a
larger model due to limits on computation power.

Dataset Size. We examine the impact of training data size on
prediction accuracy. As a data-driven approach, DIRTY relies
on a large-scale code dataset; studying the impact of data size
gives us insight into the amount of data to collect. We trained
DIRTY on 20%, 40%, 60%, 80% and 100% portion of the
full training partitionand report the results in Figure 7.

Figure 7 shows the change in accuracy with respect to the
percentage of training data. Increasing the size of training
data has a significant positive effect on the accuracy. Between
20% and 100% of the full size the accuracy increases from
67.9% to 75.8%, a relative gain of 11.6%.

Notably, accuracy on Function not in training has a relative
gain of 17.5% much larger than on the Function in training
partition. This is likely because the Function in training parti-
tion contains common library functions shared by programs
both in the training and test set, and even a smaller dataset
will have programs that use these functions. In contrast, the
Function not in training part is open-ended and diverse.

It is also worth noting that the accuracy drops sharply when
the training set size is decreased from 40% to 20%, justifying
the necessity for using a large-scale dataset.

Data Layout Encoder. We explore the impact of the Data
Layout encoder on DIRTY’s performance. We experiment
with a new model with no Data Layout encoder, DIRTYNDL.

Table 6 shows the accuracy results overall and on the Func-

Model Overall In train Not in train

DIRTYNDL 72.2 88.4 49.9
DIRTY 75.8 89.9 56.4

Table 6: Effect of the Data Layout encoder on the accuracy
of DIRTY. Accuracy is reported for the model with (DIRTY)
and without (DIRTYNDL) the encoder.

tion in training and Function not in training partitions. The
inclusion of the Data Layout encoder improves overall accu-
racy from 72.2% to 75.8%, indicating that the Data Layout
encoder is effective. The results are even more interesting
when the results are broken into the two partitions. The rel-
ative gain on the Function in not training partition is 13%
(49.9% to 56.4%), compared to 1.7% on the Function in train-
ing partition (88.8% to 89.9%). This suggests the Data Layout
encoder greatly improves DIRTY’s generalization ability.

Table 7 compares example predictions from DIRTY and
DIRTYNDL on the same types from the Function not in
training partition. For the __int64 example, the type pre-
dictions from DIRTY mostly have the correct size of 8
bytes. DIRTYNDL, however, often incorrectly predicts int and
unsigned int. This is understandable because in situations
where the value doesn’t exceed the 32-bit integer, __int64
can be safely interchanged with int, these situations can be
identified in some decompiled code. However, apart from the
correctness of the retyped program, accuracy to the original
binary, (i.e., allocating 8 bytes instead of 4), is also important.
DIRTY achieves this better than DIRTYNDL.

In the second example, the struct __m128d type occupies
16 bytes, and has two members at offset 0 and 8. DIRTYNDL
mainly mistakes this structure as a double, which might make
sense semantically but is unacceptable syntactically. With the
Data Layout encoder, DIRTY effectively reduces these errors.
This demonstrates this component achieves the soft masking
effect on type prediction as intended in Section 2.4.

Multi-Task Decoder. In this section we study the effective-
ness of the Multi-Task decoder when compared to decoders
designed for only retyping or only renaming. Inspecting the
accuracy numbers reported in Table 8, the Multi-Task decoder
has similar, but slightly lower overall accuracy on both tasks
as the two specialized models (-0.8% for retyping and -1.3%
for renaming). One possible reason is that the Multi-Task
model has twice the length of decoding lengths than a special-
ized model, which makes greedy decoding harder.

Despite the small decrease in performance, the unified
model has advantages. These are illustrated in the XName and
XType columns of Table 8. XName and XType stand for the
subsets of the full dataset where the Multi-Task decoder makes
correct renaming predictions and correct retyping predictions,
and we evaluate the retyping and renaming performance on

DIRTY DIRTYNDL
__int64 struct __m128d __int64 struct __m128d

__int64 74.3% struct __m128d 78.7% __int64 67.0% double 33.1%
<Component> 5.7% <Component> 15.4% int 6.3% <Component> 27.2%
void * 1.7% void 2.9% <Component> 6.0% __int64 10.3%
char * 1.7% __int128 2.2% unsigned int 1.5% struct __m128d 5.9%
const char * 1.6% double 0.7% char * 1.2% int 3.7%

Table 7: Comparative examples from DIRTY with and without Data Layout encoder from the Function not in training partition.
Predictions inside a gray box have a different data layout than the ground truth type. DIRTY effectively suppresses these, which
helps guide the model to a correct prediction. The structure’s full type is struct __m128d {double[2] m128d_f64;}.

Retyping Renaming
Model Overall XName Overall XType

Retyping 75.8 90.6 - -
Renaming - - 66.4 82.6
Multi-Task 74.9 92.3 65.1 84.6

Table 8: Performance comparison of the Retyping-only,
Renaming-only, and Multi-Task decoders. Overall perfor-
mance is shown, in addition to performance on retyping when
the name is correct (XName) and performance on renaming
when the type is correct (XType).

GNU coreutils
Model -O0 -O1 -O2 -O3

DIRTY 48.20 46.01 46.04 46.00

Table 9: Accuracy comparison of DIRTY on the GNU core-
utils benchmark compiled with -O0, -O1, -O2, and -O3 opti-
mization levels.

them, respectively.10 The Multi-Task decoder outperforms
the specialized models by 1.9% and 2.4% relatively on these
metrics, in spite of the longer decoding length. This means
the type and name predictions from the Multi-Task decoder
are more consistent with each other than from specialized
models. In other words, making a correct prediction on one
task increases the probability of success on the other task.

In practice, this offers additional flexibility and opens the
opportunity for more applications. For example, consider a
cooperative setting where a human decompilation expert uses
DIRTY as an analysis tool. The human expert may be unsat-
isfied with the model’s top prediction and want to switch to
another one in the top-k candidates list. With a Multi-Task de-
coder, the model adjusts the name prediction for that variable,
which is impossible with the specialized decoders.

10The probability of success on the other task also increases by chance,
because success on one task implies it is easier than average. We have
eliminated this influence by, e.g., comparing 92.3 to 90.6, instead of 74.9.

3.5 RQ4: Compiler Optimization Levels

We study the impact of compiler optimizations on DIRTY’s
accuracy. In keeping with the spirit of the OSPREY evaluation
on coreutils compiled with -O3, we choose coreutils as our
evaluation dataset. However, since we did not have access to
the original dataset used by OSPREY except -O0, we recom-
piled GNU coreutils 3.2 ourselves using optimization levels
-O0, -O1, -O2, and -O3. Table 9 shows how accurately DIRTY
is able to recover the full type (including type and field names)
informaition at each optimization level. As expected, DIRTY
does best at -O0, since DIRTY is trained on -O0 code and
we believe -O0 code to be simpler. Going from -O0 to -O1,
DIRTY’s accuracy drops from 48.2% to 46.0%. However,
there is little difference in performance between -O1, -O2,
and -O3. This suggests that DIRTY does slightly better on
the optimization level of code it was trained on, but that the
effect of optimizations is small. We believe this is because
Hex-Rays recognizes and will “undo” some optimizations
so that the decompiled code will be very similar. For exam-
ple, unoptimized code will often reference stack variables
using a frame pointer, but optimized code will reference such
variables using the stack pointer, or even maintain them in
a register. But both implementations will look similar in the
decompiled code, since the mechanism used to reference the
variable is not important at the C level. Since DIRTY operates
on the decompiled code, the decompiler effectively insulates
DIRTY from these optimizations.

3.6 Illustration

To gain more qualitative insights into DIRTY’s predictions,
consider the example in Figure 8. The code shown is the Hex-
Rays output, cleaned for presentation. Here, we would like to
rename and retype the arguments a1, a2, and a3, in addition to
the variable v1. The table in Figure 8 shows the developer’s
chosen types and names together with DIRTY’s suggestions.
DIRTY suggests the same types and names as the developer
for a3 and v1, and the same type but a different name for a2.
Although the names disagree for a2, we note that pic is an
abbreviation for picture, so the disagreement is minor. We

int find_unused_picture(int a1, int a2, int a3) {
int i, j, v1;
if (a3) {

for (i = <Num>;; ++i) {
if (i > <Num>)

goto LABEL_13;
if (!*(*(<Num> * i + a2) + <Num>))

break;
}
v1 = i;

} else {
for (j = <Num>;; ++j) {
if (j > <Num>) {
LABEL_13:

av_log(a1, <Num>, <Str>);
abort();

}
if (pic_is_unused(<Num> * j + a2))

break;
}
v1 = j;

}
return v1;

}

ID Developer DIRTY

a1 AVCodecContext_0 *avctx MpegEncContext_0 *s

a2 Picture_0 *picture Picture_0 *pic

a3 int shared int shared

v1 int result int result

Figure 8: Simplified Hex-Rays output. <Num> and <Str> are
placeholder tokens for constant numbers and strings respec-
tively. The table summarizes the original developer names and
types along with the names and types predicted by DIRTY.

also observe that Picture_0 *, the type of a2 itself carries a
lot of semantic information; even if DIRTY was unable to
suggest a meaningful name, Picture_0 *a2 is still helpful for
reverse engineering.

The developer and DIRTY disagree on both the name and
the type of a1. In this case, the name chosen by DIRTY
(s) would probably not be considered a very useful im-
provement over a1. However, the type suggested by DIRTY
(MpegEncContext_0 *) could still be quite useful to a reverse
engineer, even if it is inaccurate. It suggests that this argument
is a “context”, and hints that this function is used for video.

4 Related Work

Other projects related to type recovery for decompilation are
REWARDS [33], TIE [31], Retypd [39], and OSPREY [58].
Unlike our approach, they use program analyses to compute
constraints on types. Additionally, they are either limited to
only predicting the syntactic type (TIE, Retypd, OSPREY),
or only predicting one of a small set of hand-written types
(150 for REWARDS). In comparison, DIRTY automatically
generates a database of types by observing real-world code.

Other projects use machine learning to predict types, but tar-

get different languages than DIRTY. DEEPTYPER [20] learns
type inference for JavaScript and OPTTYPER [40], LAMB-
DANET [52], R-GNNNS-CTX [56] target TypeScript. Training
a machine learning algorithm for the task of typing dynamic
languages like these is a slightly easier task: generating a
parallel corpus is simple, since the types can simply be re-
moved without changing the semantics. The DIRT dataset
is fundamentally different: including debug information of-
ten changes the layout of the code as the decompiler adds
structures and syntax for accessing them.

To the best of our knowledge, the most directly-related
work to DIRTY is TypeMiner [34]. TypeMiner is a pioneering
work, providing the proof-of-concept for recovering types
from C binaries. However, they use much simpler machine
learning algorithms and their dataset only consists of 23,482
variables and 17 primitive types. Escalada et al. [14] has
provided similar insights. They adopt simple classification
algorithms to predict function return types in C, but they only
consider from only 10 different (syntactic) types and their
dataset is limited to 2,339 functions from real programs and
18,000 synthetic functions.

Two other projects targeting the improvement of decom-
piler output using neural models are DIRE [29], which pre-
dicts variable names, DIRECT [38], which extends DIRE
using transformer-based models, and Nero [8], which gen-
erates procedure names. Other approaches work directly on
assembly [16, 26, 27], and learn code structure generation in-
stead of aiming to recover developer-specified variable types
or names. Similarly, DEBIN [18] and CATI [5] use machine
learning to respectively predict debug information and types
directly from stripped binaries without a decompiler.

5 Discussion

In this paper we presented DIRTY, a novel deep learning-
based technique for predicting variable types and names in
decompiled code. Still, DIRTY is limited in several ways that
provide key opportunities for future improvements.

Alternative Decompilers to Hex-Rays. We implement
DIRTY on top of the Hex-Rays decompiler because of its
positive reputation and the programmatic access it affords to
decompiler internals. However, DIRTY is not fundamentally
specific to Hex-Rays, and the technique should conceptually
work with any decompiler that names variables using DWARF
debug symbols. Note that, due to its recent popularity and
promise, we attempted to evaluate our techniques using the
newer, open-source Ghidra decompiler. Unfortunately, it is
currently infeasible, because Ghidra routinely failed to accu-
rately name stack variables based on DWARF. This appears
to be a combination of specific issues11 and the general de-
sign of the decompiler. Ghidra’s decompiler consists of many
passes which modify and augment the current decompilation.

11https://github.com/NationalSecurityAgency/ghidra/issues/2322

Some of these passes combine variables, but in doing so may
combine a DWARF-named variable with others. Since the
combined variable no longer corresponds directly with the
DWARF variable information, Ghidra discards the name. We
are optimistic, however, that when the above-mentioned is-
sues are addressed, Ghidra may again be a reasonable target
for our approach.

Generalizing to Unseen Types. A limitation of DIRTY’s
current decoder is that it can only predict types seen during
training. Fortunately, there appears, empirically, to be suf-
ficient redundancy across large corpora that DIRTY is still
frequently able to successfully recover structural types. This
lends credence to the hypothesis that code is natural, an ob-
servation that has been explored in several domains [9, 23].
It moreover appears that data layout is of particular impor-
tance here: layout information recovered from the decompiler
impose key constraints on the overall prediction problem. In-
deed, our results in Section 3.4 corroborate the intuition that
the Data Layout Encoder is especially important for succeed-
ing on previously unseen code.

We envision meaningful future opportunities to more di-
rectly expand DIRTY’s capabilities to predict unseen struc-
tures. This problem is analogous machine translation models
that must deal with rare or compound words (e.g., xenopho-
bia) that are not present in their dictionary. Byte Pair Encod-
ing [45] (BPE) is the most frequently used technique to tackle
this problem in the natural language domain. It automatically
splits words into multiple tokens that are present in the dic-
tionary (e.g., xeno and ##phobia). (The ## indicates the word
is still part of the current word, instead of a new word next
to it.) This technique greatly increases the number of words
a model can handle despite a limited dictionary size, and en-
ables the composition of new words that were not seen during
training. This suggests that we can similarly extend DIRTY’s
decoder to predict previously unseen types by decomposing
structure types into multiple pieces with BPE. For example,
a structure type struct timeval {time_t tv_sec; suseconds_t

tv_usec;} is split into four separate tokens, which are 1) struct
timeval, 2) time_t tv_vec;, 3) suseconds_t tv_usec;, and 4)

<end_of_struct>.
However, unfortunately, our preliminary experiments sug-

gested that this hurts overall prediction accuracy. It also sig-
nificantly slows down prediction, since it drastically increases
the number of decoding steps. It moreover requires finer-
grained accuracy metrics, like tree distance, to allow us to
measure and credit partially correct predictions. Based on
these observations, we believe unseen structure types should
be handled specially with a tailored model, a problem we
leave to future work.

Supporting Non-C Languages. A benefit of decompiling to
C is that as a relatively low-level language, it can express the
behavior of executables beyond those written in C. Although
we designed DIRTY to be used with C programs and types,

DIRTY can run on non-C programs, and will try to identify
the C type that best captures the way in which that variable is
being used. Thus, DIRTY provides value to analysts seeking
to understand non-C programs, similar to how C decompilers
such as Hex-Rays help analysts to understand C++ programs.

However, many compiled programming languages have
type systems far richer than C’s, and expressing these types
in terms of C types may be confusing. For example, in C++,
virtual functions are often implemented by reading an address
out of a virtual function table [13, 44]. Although techniques
like DIRTY can recognize such tables as structs or arrays of
code pointers, it does not reveal the connection to the higher-
level C++ behavior of virtual functions.

Extending DIRTY to support higher-level languages such
as C++ is an interesting open problem. To some degree, as
long as the decompiler is able to import the higher-level type
information from debug symbols into the decompiler output, it
should be possible to train DIRTY to recognize non-C types.
For instance, 6% of the programs in DIRT are written in
C++, and our evaluation measures DIRTY’s ability to predict
common C++ class types such as std::string. But recovering
higher level properties of these types, especially for those
never seen during training, is a challenging problem and is
likely to require language-specific adaptations [13, 44].

Limited Input Length. As common with Transformers, we
truncate the decompiled function if the length n exceeds
some upper limit max_seq_length, which makes training
more efficient. In our experiments we set max_seq_length
to 512 for two reasons. First, 512 is the default value for
max_seq_length in many Transformer models [10, 50]. Sec-
ond, in DIRT, the average number of tokens in a function is
220.3, and only 8.8% of the functions have more than 512
tokens, i.e., we exclude relatively few of the possible inputs
encountered in the wild. Still, if enough computational re-
sources are available, we recommend using efficient Trans-
former implementations such as Big Bird [57] instead. These
can deal with much larger max_seq_length and can be used
out-of-the-box to replace our implementation.

6 Conclusion

The decompiler is an important tool used for reverse engi-
neering. While decompilers attempt to reverse compilation by
transforming binaries into high-level languages, generating
the same code originally written by the developer is impossi-
ble. Many of the useful abstractions provided by high-level
languages such as loops, typed variables, and comments, are
irreversibly destroyed by compilation. Decompilers are able
to deterministically reconstruct some structural properties of
code, but comments, variable names, and custom variable
types are technically impossible to recover.

In this paper we address the problem of assigning decom-
piled variables meaningful names and types by statistically

modeling how developers write code. We present DIRTY (De-
compIled variable ReTYper), a novel technique for improving
the quality of decompiler output that automatically generates
meaningful variable names and types. Empirical evaluation
of DIRTY on a novel dataset of C code mined from GitHub
shows that DIRTY outperforms prior work approaches by
a sizable margin, recovering the original names written by
developers 66.4% of the time and the original types 75.8% of
the time.

Acknowledgments

The authors would like to thank Zhou Zhang and the authors
of OSPREY for providing us with data and feedback for our
comparative experiments. This material is based upon work
supported in part by the National Science Foundation (awards
1815287 and 1910067).

References

[1] Daniel Adiwardana, Minh-Thang Luong, David R. So,
Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang,
Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, and
Quoc V. Le. Towards a human-like open-domain chat-
bot. arXiv preprint arXiv:2001.09977, 2020.

[2] Miltiadis Allamanis, Earl T. Barr, Premkumar Devanbu,
and Charles Sutton. A survey of machine learning for
big code and naturalness. ACM Computing Surveys
(CSUR), 51(4):81, 2018.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. In International Conference on
Learning Representations, ICLR, 2015.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[5] Ligeng Chen, Zhongling He, and Bing Mao. CATI:
Context-assisted type inference from stripped binaries.
In International Conference on Dependable Systems
and Networks, DSN, 2020.

[6] Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. Generating long sequences with sparse trans-
formers. arXiv preprint arXiv:1904.10509, 2019.

[7] Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase rep-
resentations using RNN encoder-decoder for statistical
machine translation. In Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP, 2014.

[8] Yaniv David, Uri Alon, and Eran Yahav. Neural re-
verse engineering of stripped binaries using augmented
control flow graphs. Proceedings of the ACM on Pro-
gramming Languages, 4(OOPSLA):1–28, 2020.

[9] Premkumar Devanbu. New initiative: The naturalness
of software. In International Conference on Software
Engineering, ICSE, pages 543–546, 2015.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In
Annual Conference of the North American Chapter of
the Association for Computational Linguistics, NAACL-
HLT, pages 4171–4186, 2019.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929,
2020.

[12] Lukas Durfina, Jakub Kroustek, and Petr Zemek. PsybOt
malware: A step-by-step decompilation case study. In
Working Conference on Reverse Engineering, WCRE,
pages 449–456, 2013.

[13] Rukayat Ayomide Erinfolami and Aravind Prakash.
Devil is virtual: Reversing virtual inheritance in C++
binaries. In Proceedings of the ACM Conference on
Computer and Communications Security, CCS, pages
133–148, 2020.

[14] Javier Escalada, Ted Scully, and Francisco Ortin. Im-
proving type information inferred by decompilers
with supervised machine learning. arXiv preprint
arXiv:2101.08116, 2021.

[15] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models
with simple and efficient sparsity. arXiv preprint
arXiv:2101.03961, 2021.

[16] Cheng Fu, Huili Chen, Haolan Liu, Xinyun Chen, Yuan-
dong Tian, Farinaz Koushanfar, and Jishen Zhao. Coda:
An end-to-end neural program decompiler. In Con-
ference on Neural Information Processing Systems,
NeurIPS, 2019.

[17] Edward M. Gellenbeck and Curtis R. Cook. An inves-
tigation of procedure and variable names as beacons
during program comprehension. Technical report, Ore-
gon State University, 1991.

[18] Jingxuan He, Pesho Ivanov, Petar Tsankov, Veselin Ray-
chev, and Martin Vechev. DEBIN: Predicting debug
information in stripped binaries. In Conference on Com-
puter and Communications Security, CCS, 2018.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition.
In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pages 770–778, 2016.

[20] Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and
Miltiadis Allamanis. Deep learning type inference. In
Joint Meeting of the European Software Engineering
Conference and the Symposium on the Foundations of
Software Engineering, ESEC/FSE, 2018.

[21] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (GELUs). arXiv preprint arXiv:1606.08415, 2016.

[22] Hex-Rays. The hex-rays decompiler, 2019. URL https:
//www.hex-rays.com/products/decompiler/.

[23] Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel,
and Premkumar Devanbu. On the naturalness of soft-
ware. In International Conference on Software Engi-
neering, ICSE, pages 837–847. IEEE, 2012.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-
term memory. Neural Computation, 9(8):1735–1780,
1997.

[25] Alan Jaffe, Jeremy Lacomis, Edward J. Schwartz, Claire
Le Goues, and Bogdan Vasilescu. Meaningful variable
names for decompiled code: A machine translation ap-
proach. In International Conference on Program Com-
prehension, ICPC, pages 20–30, May 2018.

[26] Deborah S. Katz, Jason Ruchti, and Eric Schulte. Using
recurrent neural networks for decompilation. In Interna-
tional Conference on Software Analysis, Evolution and
Reegnineering, SANER, pages 346–356, 2018.

[27] Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran
Yahav. Towards neural decompilation. arXiv preprint
arXiv:1905.08325, 2019.

[28] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference
on Learning Representations, ICLR, 2015.

[29] Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz,
Miltiadis Allamanis, Claire Le Goues, Graham Neubig,
and Bogdan Vasilescu. DIRE: A neural approach to de-
compiled identifier naming. In International Conference
on Automated Software Engineering, ASE, 2019.

[30] Dawn Lawrie, Christopher Morrell, Henry Feild, and
David Binkley. What’s in a name? A study of identifiers.
In International Conference on Program Comprehen-
sion, ICPC, pages 3–12, 2006.

[31] JongHyup Lee, Thanassis Avgerinos, and David Brum-
ley. TIE: Principled reverse engineering of types in
binary programs. In Network and Distributed System
Security Symposium, NDSS, 2011.

[32] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. BART: De-
noising sequence-to-sequence pre-training for natural
language generation, translation, and comprehension. In
Annual Meeting of the Association for Computational
Linguistics, ACL, pages 7871–7880, 2020.

[33] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Auto-
matic reverse engineering of data structures from binary
execution. In CERIAS Annual Security Symposium, CE-
RIAS, 2010.

[34] Alwin Maier, Hugo Gascon, Christian Wressnegger, and
Konrad Rieck. TypeMiner: Recovering types in binary
programs using machine learning. In International Con-
ference on Detection of Intrusions and Malware, and
Vulnerability Assessment, DIMVA, 2019.

[35] Paul Michel and Graham Neubig. Extreme adaptation
for personalized neural machine translation. In Annual
Meeting of the Association for Computational Linguis-
tics (Short Papers), ACL, pages 312–318, 2018.

[36] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, and
Bing Xiang. Abstractive text summarization using
sequence-to-sequence RNNs and beyond. In SIGNLL
Conference on Computational Natural Language Learn-
ing, CoNLL, pages 280–290, 2016.

[37] Hermann Ney, Dieter Mergel, Andreas Noll, and
Annedore Paeseler. A data-driven organization of the dy-
namic programming beam search for continuous speech
recognition. In International Conference on Acoustics,
Speech, and Signal Processing, ICASSP, 1987.

[38] Vikram Nitkin, Anthony Saieva, Baishakhi Ray, and Gail
Kaiser. DIRECT: A transformer-based model for de-
compiled identifier renaming. In Workshop on Natural
Language Processing for Programming, 2021.

[39] Matthew Noonan, Alexey Loginov, and David Cok.
Polymorphic type inference for machine code. In Con-
ference on Programming Language Design and Imple-
mentation, PLDI, pages 27–41, 2016.

[40] Irene Vlassi Pandi, Earl T Barr, Andrew D Gordon, and
Charles Sutton. OptTyper: Probabilistic type inference
by optimising logical and natural constraints. arXiv
preprint arXiv:2004.00348, 2020.

https://www.hex-rays.com/products/decompiler/
https://www.hex-rays.com/products/decompiler/

[41] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al.
PyTorch: An imperative style, high-performance deep
learning library. In Conference on Neural Information
Processing Systems, NeurIPS, pages 8024–8035. 2019.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. Journal
of Machine Learning Research, 21:1–67, 2020.

[43] Eric Schulte, Jason Ruchti, Matt Noonan, David Ciar-
letta, and Alexey Loginov. Evolving exact decompila-
tion. In Workshop on Binary Analysis Research, BAR,
2018.

[44] Edward J. Schwartz, Cory F. Cohen, Michael Duggan,
Jeffrey Gennari, Jeffrey S. Havrilla, and Charles Hines.
Using logic programming to recover C++ classes and
methods from compiled executables. In Conference on
Computer and Communications Security, CCS, 2018.

[45] Rico Sennrich, Barry Haddow, and Alexandra Birch.
Neural machine translation of rare words with subword
units. arXiv preprint arXiv:1508.07909, 2015.

[46] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls,
Nick Stephens, Mario Polino, Andrew Dutcher, John
Grosen, Siji Feng, Christophe Hauser, Christopher
Kruegel, and Giovanni Vigna. (State of) The art of war:
Offensive techniques in binary analysis. In Symposium
on Security and Privacy, SP, pages 138–157, 2016.

[47] Asia Slowinska, Traian Stancescu, and Herbert Bos.
Howard: A dynamic excavator for reverse engineering
data structures. In Network and Distributed System Se-
curity Symposium, NDSS, 2011.

[48] Katerina Troshina, Yegor Derevenets, and Alexander
Chernov. Reconstruction of composite types for decom-
pilation. In Working Conference on Source Code Analy-
sis and Manipulation, SCAM, pages 179–188, 2010.

[49] Michael James van Emmerik. Static Single Assignment
for Decompilation. PhD thesis, University of Queens-
land, 2007.

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In
Conference on Neural Information Processing Systems,
NeurIPS, pages 6000–6010, 2017.

[51] Nguyen Xuan Vinh, Julien Epps, and James Bailey. In-
formation theoretic measures for clusterings compari-
son: Variants, properties, normalization and correction
for chance. The Journal of Machine Learning Research,
11:2837–2854, 2010.

[52] Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig.
LambdaNet: Probabilistic type inference using graph
neural networks. In International Conference on Learn-
ing Representations, ICLR, 2020.

[53] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. Show, attend and tell: Neural image
caption generation with visual attention. In Interna-
tional Conference on Machine Learning, ICML, pages
2048–2057, 2015.

[54] Khaled Yakdan, Sebastian Eschweiler, Elmar Gerhards-
Padilla, and Matthew Smith. No more gotos: Decom-
pilation using pattern-independent control-flow struc-
turing and semantics-preserving transformations. In
Network and Distributed System Security Symposium,
NDSS, 2015.

[55] Khaled Yakdan, Sergej Dechand, Elmar Gerhards-
Padilla, and Matthew Smith. Helping Johnny to analyze
malware: A usability-optimized decompiler and mal-
ware analysis user study. In Symposium on Security and
Privacy, SP, pages 158–177, 2016.

[56] Fangke Ye, Jisheng Zhao, and Vivek Sarkar. Advanced
graph-based deep learning for probabilistic type infer-
ence. arXiv preprint arXiv:2009.05949, 2020.

[57] Manzil Zaheer, Guru Guruganesh, Avinava Dubey,
Joshua Ainslie, Chris Alberti, Santiago Ontanon, Philip
Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big
Bird: Transformers for longer sequences. arXiv preprint
arXiv:2007.14062, 2020.

[58] Z. Zhang, Y. Ye, W. You, G. Tao, W. Lee, Y. Kwon,
Y. Aafer, and X. Zhang. OSPREY: Recovery of variable
and data structure via probabilistic analysis for stripped
binary. In Symposium on Security and Privacy, SP, pages
872–891, 2021.

[59] Zhuo Zhang, Wei You, Guanhong Tao, Guannan Wei,
Yonghwi Kwon, and Xiangyu Zhang. BDA: Practical
dependence analysis for binary executables by unbiased
whole-program path sampling and per-path abstract in-
terpretation. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–31, 2019.

A Experimental Setup

Hyperparameter Configurations Our detailed hyperpa-
rameters are shown in Table 10. We use a six-layer Trans-
former Encoder for the code encoder, a three-layer Trans-
former Encoder for the data layout encoder, and a six-layer
Transformer Decoder for the type decoder. We set the num-
ber of attention heads to 8. Input embedding dimensions and
hidden sizes dmodel are set to 512 for the code encoder, and
256 for the data layout encoder. Following prior work, we
empirically set the size of the inner-layer of the position-
wise feed-forward inner representation size d f f to four times
the hidden size dmodel [50]. We use the gelu activation func-
tion [21] rather than the standard relu, following BERT [10].
During training, we set the batch size to 64 and the learning
rate to 1× 10−4. We use the Adam optimizer [28] and set
β1 = 0.9,β2 = 0.999 and ε = 1× 10−8. We apply gradient
clipping by value within the range [−1,1]. We also apply
a dropout rate of 0.1 as regularization. We train the model
for 15 epochs. At the inference time, we use beam search to
predict the types for each function with a beam size of 5.

Hardware Configuration We conducted all experiments
on Linux servers equipped with two Intel Xeon Gold 6148
processors, 192GB RAM and 8 NVIDIA Volta V100 GPUs.
We expect that a similar machine could reproduce the full
training and testing stage of our main experiments in 120
GPU hours.

Software We implemented our models with PyTorch [41]
version 1.5.1 and Python 3.6. We plan to release our dataset,
code and pre-trained models at publication time.

Hyperparameter DIRTY DIRTYS

Max Sequence Length 512 512
Encoder/Decoder layers 6/6 3/3
Hidden units per layer 512 256
Attention heads 8 4
Layout encoder layers 3 3
Layout encoder hidden units 256 128
Batch size 64 64
Training epochs 15 30
Learning rate 10−4 10−4

Adam ε 10−8 10−8

Adam β1 0.9 0.9
Adam β2 0.999 0.999
Gradient clipping 1.0 1.0
Dropout rate 0.1 0.1
Number of parameters 167M 40M

Table 10: Summary of the hyperparameters of DIRTY and
the smaller DIRTYS.

Dataset DIRTY

#Binaries 75,656
Unique #functions (train) 718,765
Unique #functions (valid) 139,473
Unique #functions (test) 139,394
% func body in train (valid) 64.6%
% func body in train (test) 65.5%
Avg. #code tokens 220.3
Median #code tokens 86
Avg. #identifiers per function 5.1
Median #identifiers per function 3

Table 11: Statistics of the DIRT datasets.

	Introduction
	Model Design
	The Encoder-Decoder Architecture
	Transformers
	DIRTY's Architecture
	Data Layout Encoder
	Multi-Task

	Evaluation
	Experimental Setup
	RQ1: Overall Effectiveness
	RQ2: Comparison with Prior Work
	RQ3: Ablation Study
	RQ4: Compiler Optimization Levels
	Illustration

	Related Work
	Discussion
	Conclusion
	Experimental Setup

